Suppr超能文献

识别癫痫发作风险因素:使用贝叶斯预测比较睡眠、天气和时间特征。

Identifying seizure risk factors: A comparison of sleep, weather, and temporal features using a Bayesian forecast.

机构信息

Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia.

Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia.

出版信息

Epilepsia. 2021 Feb;62(2):371-382. doi: 10.1111/epi.16785. Epub 2020 Dec 30.

Abstract

OBJECTIVE

Most seizure forecasting algorithms have relied on features specific to electroencephalographic recordings. Environmental and physiological factors, such as weather and sleep, have long been suspected to affect brain activity and seizure occurrence but have not been fully explored as prior information for seizure forecasts in a patient-specific analysis. The study aimed to quantify whether sleep, weather, and temporal factors (time of day, day of week, and lunar phase) can provide predictive prior probabilities that may be used to improve seizure forecasts.

METHODS

This study performed post hoc analysis on data from eight patients with a total of 12.2 years of continuous intracranial electroencephalographic recordings (average = 1.5 years, range = 1.0-2.1 years), originally collected in a prospective trial. Patients also had sleep scoring and location-specific weather data. Histograms of future seizure likelihood were generated for each feature. The predictive utility of individual features was measured using a Bayesian approach to combine different features into an overall forecast of seizure likelihood. Performance of different feature combinations was compared using the area under the receiver operating curve. Performance evaluation was pseudoprospective.

RESULTS

For the eight patients studied, seizures could be predicted above chance accuracy using sleep (five patients), weather (two patients), and temporal features (six patients). Forecasts using combined features performed significantly better than chance in six patients. For four of these patients, combined forecasts outperformed any individual feature.

SIGNIFICANCE

Environmental and physiological data, including sleep, weather, and temporal features, provide significant predictive information on upcoming seizures. Although forecasts did not perform as well as algorithms that use invasive intracranial electroencephalography, the results were significantly above chance. Complementary signal features derived from an individual's historic seizure records may provide useful prior information to augment traditional seizure detection or forecasting algorithms. Importantly, many predictive features used in this study can be measured noninvasively.

摘要

目的

大多数癫痫发作预测算法都依赖于特定于脑电图记录的特征。环境和生理因素,如天气和睡眠,长期以来一直被怀疑会影响大脑活动和癫痫发作,但在针对特定患者的分析中,尚未充分探索这些因素作为癫痫发作预测的先验信息。本研究旨在量化睡眠、天气和时间因素(一天中的时间、一周中的天数和月相)是否可以提供预测性先验概率,这些概率可能用于改善癫痫发作预测。

方法

本研究对来自 8 名患者的 12.2 年连续颅内脑电图记录(平均=1.5 年,范围=1.0-2.1 年)进行了事后分析,这些数据最初是在一项前瞻性试验中收集的。患者还进行了睡眠评分和位置特定的天气数据记录。为每个特征生成未来癫痫发作可能性的直方图。使用贝叶斯方法将不同特征组合成癫痫发作可能性的总体预测,来衡量单个特征的预测效用。使用接收器操作曲线下的面积比较不同特征组合的性能。性能评估是伪前瞻性的。

结果

在研究的 8 名患者中,使用睡眠(5 名患者)、天气(2 名患者)和时间特征(6 名患者)可以在一定程度上预测癫痫发作。使用组合特征的预测明显优于机会在 6 名患者中。对于其中的 4 名患者,组合预测的效果优于任何单个特征。

意义

环境和生理数据,包括睡眠、天气和时间特征,为即将发生的癫痫发作提供了重要的预测信息。尽管预测结果不如使用侵入性颅内脑电图的算法好,但结果明显高于机会水平。从个体的历史癫痫发作记录中得出的补充信号特征可能为增强传统的癫痫发作检测或预测算法提供有用的先验信息。重要的是,本研究中使用的许多预测特征可以进行非侵入性测量。

相似文献

3
Forecasting cycles of seizure likelihood.预测癫痫发作可能性的周期。
Epilepsia. 2020 Apr;61(4):776-786. doi: 10.1111/epi.16485. Epub 2020 Mar 27.
5
Learning to generalize seizure forecasts.学习泛化癫痫预测。
Epilepsia. 2023 Dec;64 Suppl 4:S99-S113. doi: 10.1111/epi.17406. Epub 2022 Sep 22.
7
Forecasting Seizure Likelihood With Wearable Technology.利用可穿戴技术预测癫痫发作可能性
Front Neurol. 2021 Jul 15;12:704060. doi: 10.3389/fneur.2021.704060. eCollection 2021.
10
Seizure count forecasting to aid diagnostic testing in epilepsy.癫痫发作计数预测辅助癫痫诊断测试。
Epilepsia. 2022 Dec;63(12):3156-3167. doi: 10.1111/epi.17415. Epub 2022 Oct 9.

引用本文的文献

8
Seizure forecasting: Bifurcations in the long and winding road.癫痫发作预测:漫长曲折道路上的分岔口。
Epilepsia. 2023 Dec;64 Suppl 4(Suppl 4):S78-S98. doi: 10.1111/epi.17311. Epub 2022 Jul 1.
10
Weather patterns and occurrence of epileptic seizures.天气模式与癫痫发作的发生。
BMC Neurol. 2022 Jan 21;22(1):33. doi: 10.1186/s12883-021-02535-8.

本文引用的文献

3
Chance and risk in epilepsy.癫痫的机遇与风险。
Curr Opin Neurol. 2020 Apr;33(2):163-172. doi: 10.1097/WCO.0000000000000798.
8
Seizure prediction - ready for a new era.癫痫发作预测——迎接新纪元。
Nat Rev Neurol. 2018 Oct;14(10):618-630. doi: 10.1038/s41582-018-0055-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验