University of California Merced, Merced, CA 95343.
Columbia University, New York, NY 10027.
J Neurosci. 2021 Feb 3;41(5):866-872. doi: 10.1523/JNEUROSCI.1652-20.2020. Epub 2020 Dec 30.
The ability to perceive and produce movements in the real world with precise timing is critical for survival in animals, including humans. However, research on sensorimotor timing has rarely considered the tight interrelation between perception, action, and cognition. In this review, we present new evidence from behavioral, computational, and neural studies in humans and nonhuman primates, suggesting a pivotal link between sensorimotor control and temporal processing, as well as describing new theoretical frameworks regarding timing in perception and action. We first discuss the link between movement coordination and interval-based timing by addressing how motor training develops accurate spatiotemporal patterns in behavior and influences the perception of temporal intervals. We then discuss how motor expertise results from establishing task-relevant neural manifolds in sensorimotor cortical areas and how the geometry and dynamics of these manifolds help reduce timing variability. We also highlight how neural dynamics in sensorimotor areas are involved in beat-based timing. These lines of research aim to extend our understanding of how timing arises from and contributes to perceptual-motor behaviors in complex environments to seamlessly interact with other cognitive processes.
在现实世界中具有精确时间感知和产生运动的能力对于包括人类在内的动物的生存至关重要。然而,传感器运动计时研究很少考虑到感知、动作和认知之间的紧密相互关系。在这篇综述中,我们从人类和非人类灵长类动物的行为、计算和神经研究中提供了新的证据,表明传感器运动控制和时间处理之间存在关键联系,并描述了关于感知和动作中的时间的新理论框架。我们首先通过讨论运动训练如何在行为中发展出准确的时空模式以及如何影响对时间间隔的感知,来讨论运动协调和基于区间的定时之间的联系。然后,我们讨论了运动专业技能如何源于在感觉运动皮层区域中建立与任务相关的神经流形,以及这些流形的几何形状和动态如何有助于减少定时变化性。我们还强调了感觉运动区域中的神经动力学如何参与基于节拍的定时。这些研究旨在扩展我们对时间如何从复杂环境中的感知运动行为中产生并为其做出贡献的理解,以与其他认知过程无缝交互。