Centro Cardiologico Monzino, IRCCS, Milan, Italy.
Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA.
Biomed Res Int. 2020 Dec 16;2020:6649410. doi: 10.1155/2020/6649410. eCollection 2020.
Cardiac computed tomography angiography (CCTA) is widely used as a diagnostic tool for evaluation of coronary artery disease (CAD). Despite the excellent capability to rule-out CAD, CCTA may overestimate the degree of stenosis; furthermore, CCTA analysis can be time consuming, often requiring advanced postprocessing techniques. In consideration of the most recent ESC guidelines on CAD management, which will likely increase CCTA volume over the next years, new tools are necessary to shorten reporting time and improve the accuracy for the detection of ischemia-inducing coronary lesions. The application of artificial intelligence (AI) may provide a helpful tool in CCTA, improving the evaluation and quantification of coronary stenosis, plaque characterization, and assessment of myocardial ischemia. Furthermore, in comparison with existing risk scores, machine-learning algorithms can better predict the outcome utilizing both imaging findings and clinical parameters. Medical AI is moving from the research field to daily clinical practice, and with the increasing number of CCTA examinations, AI will be extensively utilized in cardiac imaging. This review is aimed at illustrating the state of the art in AI-based CCTA applications and future clinical scenarios.
心脏计算机断层血管造影术(CCTA)广泛用于评估冠状动脉疾病(CAD)的诊断工具。尽管 CCTA 排除 CAD 的能力出色,但可能会高估狭窄程度;此外,CCTA 分析可能需要花费大量时间,通常需要先进的后处理技术。鉴于最新的 ESC 关于 CAD 管理的指南,未来几年 CCTA 的数量可能会增加,因此需要新的工具来缩短报告时间并提高检测缺血诱导性冠状动脉病变的准确性。人工智能(AI)的应用可能为 CCTA 提供有用的工具,改善冠状动脉狭窄、斑块特征和心肌缺血的评估和量化。此外,与现有的风险评分相比,机器学习算法可以更好地利用成像结果和临床参数来预测结果。医学 AI 正从研究领域进入日常临床实践,随着 CCTA 检查数量的增加,AI 将在心脏成像中得到广泛应用。本综述旨在介绍基于 AI 的 CCTA 应用和未来临床场景的最新技术。
Int J Cardiovasc Imaging. 2020-7-2
Diagnostics (Basel). 2024-9-23
Lancet Digit Health. 2020-12
Radiol Med. 2020-9-18
Int J Cardiovasc Imaging. 2020-7-2
Eur J Radiol. 2020-8