文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

冠状动脉计算机断层扫描血管造影中的人工智能:从解剖学到预后。

Artificial Intelligence in Coronary Computed Tomography Angiography: From Anatomy to Prognosis.

机构信息

Centro Cardiologico Monzino, IRCCS, Milan, Italy.

Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA.

出版信息

Biomed Res Int. 2020 Dec 16;2020:6649410. doi: 10.1155/2020/6649410. eCollection 2020.


DOI:10.1155/2020/6649410
PMID:33381570
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7762640/
Abstract

Cardiac computed tomography angiography (CCTA) is widely used as a diagnostic tool for evaluation of coronary artery disease (CAD). Despite the excellent capability to rule-out CAD, CCTA may overestimate the degree of stenosis; furthermore, CCTA analysis can be time consuming, often requiring advanced postprocessing techniques. In consideration of the most recent ESC guidelines on CAD management, which will likely increase CCTA volume over the next years, new tools are necessary to shorten reporting time and improve the accuracy for the detection of ischemia-inducing coronary lesions. The application of artificial intelligence (AI) may provide a helpful tool in CCTA, improving the evaluation and quantification of coronary stenosis, plaque characterization, and assessment of myocardial ischemia. Furthermore, in comparison with existing risk scores, machine-learning algorithms can better predict the outcome utilizing both imaging findings and clinical parameters. Medical AI is moving from the research field to daily clinical practice, and with the increasing number of CCTA examinations, AI will be extensively utilized in cardiac imaging. This review is aimed at illustrating the state of the art in AI-based CCTA applications and future clinical scenarios.

摘要

心脏计算机断层血管造影术(CCTA)广泛用于评估冠状动脉疾病(CAD)的诊断工具。尽管 CCTA 排除 CAD 的能力出色,但可能会高估狭窄程度;此外,CCTA 分析可能需要花费大量时间,通常需要先进的后处理技术。鉴于最新的 ESC 关于 CAD 管理的指南,未来几年 CCTA 的数量可能会增加,因此需要新的工具来缩短报告时间并提高检测缺血诱导性冠状动脉病变的准确性。人工智能(AI)的应用可能为 CCTA 提供有用的工具,改善冠状动脉狭窄、斑块特征和心肌缺血的评估和量化。此外,与现有的风险评分相比,机器学习算法可以更好地利用成像结果和临床参数来预测结果。医学 AI 正从研究领域进入日常临床实践,随着 CCTA 检查数量的增加,AI 将在心脏成像中得到广泛应用。本综述旨在介绍基于 AI 的 CCTA 应用和未来临床场景的最新技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/243c/7762640/955ef0222fa2/BMRI2020-6649410.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/243c/7762640/83ba372ffa71/BMRI2020-6649410.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/243c/7762640/c2d65f7c2b8f/BMRI2020-6649410.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/243c/7762640/8549beae6b32/BMRI2020-6649410.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/243c/7762640/955ef0222fa2/BMRI2020-6649410.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/243c/7762640/83ba372ffa71/BMRI2020-6649410.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/243c/7762640/c2d65f7c2b8f/BMRI2020-6649410.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/243c/7762640/8549beae6b32/BMRI2020-6649410.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/243c/7762640/955ef0222fa2/BMRI2020-6649410.004.jpg

相似文献

[1]
Artificial Intelligence in Coronary Computed Tomography Angiography: From Anatomy to Prognosis.

Biomed Res Int. 2020

[2]
From CT to artificial intelligence for complex assessment of plaque-associated risk.

Int J Cardiovasc Imaging. 2020-7-2

[3]
Machine learning assessment of myocardial ischemia using angiography: Development and retrospective validation.

PLoS Med. 2018-11-13

[4]
Diffuse coronary artery disease among other atherosclerotic plaque characteristics by coronary computed tomography angiography for predicting coronary vessel-specific ischemia by fractional flow reserve.

Atherosclerosis. 2017-3

[5]
Serial analysis of coronary artery disease progression by artificial intelligence assisted coronary computed tomography angiography: early clinical experience.

BMC Cardiovasc Disord. 2022-11-26

[6]
Machine Learning From Quantitative Coronary Computed Tomography Angiography Predicts Fractional Flow Reserve-Defined Ischemia and Impaired Myocardial Blood Flow.

Circ Cardiovasc Imaging. 2022-10

[7]
Effect of Calcification Based on Computer-Aided System on CT-Fractional Flow Reserve in Diagnosis of Coronary Artery Lesion.

Comput Math Methods Med. 2022

[8]
Coronary CT angiography-derived plaque quantification with artificial intelligence CT fractional flow reserve for the identification of lesion-specific ischemia.

Eur Radiol. 2018-12-6

[9]
CT-based myocardial ischemia evaluation: quantitative angiography, transluminal attenuation gradient, myocardial perfusion, and CT-derived fractional flow reserve.

Int J Cardiovasc Imaging. 2016-6

[10]
Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry.

J Cardiovasc Comput Tomogr. 2018-4-30

引用本文的文献

[1]
Intersections and Challenges in the Management of Acute Coronary Syndrome and Stroke: Pathophysiology, Treatment Dilemmas, and Integrated Prevention Strategies.

J Clin Med. 2025-3-29

[2]
Applications of Artificial Intelligence for the Prediction and Diagnosis of Cancer Therapy-Related Cardiac Dysfunction in Oncology Patients.

Cancers (Basel). 2025-2-11

[3]
Computed Tomography Evaluation of Coronary Atherosclerosis: The Road Travelled, and What Lies Ahead.

Diagnostics (Basel). 2024-9-23

[4]
Beyond Stress Ischemia: Unveiling the Multifaceted Nature of Coronary Vulnerable Plaques Using Cardiac Computed Tomography.

J Clin Med. 2024-7-22

[5]
The Role of Artificial Intelligence in Healthcare: Enhancing Coronary Computed Tomography Angiography for Coronary Artery Disease Management.

Cureus. 2024-6-2

[6]
Artificial intelligence-assisted measurements of coronary computed tomography angiography parameters such as stenosis, flow reserve, and fat attenuation for predicting major adverse cardiac events in patients with coronary arterial disease.

Biomol Biomed. 2024-9-6

[7]
Imaging biomarkers in cardiac CT: moving beyond simple coronary anatomical assessment.

Radiol Med. 2024-3

[8]
Patient-level explainable machine learning to predict major adverse cardiovascular events from SPECT MPI and CCTA imaging.

PLoS One. 2023

[9]
Validation of the commercial coronary computed tomographic angiography artificial intelligence for coronary artery stenosis: a cross-sectional study.

Quant Imaging Med Surg. 2023-6-1

[10]
ECG-based cardiodynamicsgram can reflect anomalous functional information in coronary artery disease.

Clin Cardiol. 2023-6

本文引用的文献

[1]
Ability of artificial intelligence to diagnose coronary artery stenosis using hybrid images of coronary computed tomography angiography and myocardial perfusion SPECT.

Eur J Hybrid Imaging. 2019-3-18

[2]
Addressing bias: artificial intelligence in cardiovascular medicine.

Lancet Digit Health. 2020-12

[3]
Artificial intelligence in cardiac radiology.

Radiol Med. 2020-9-18

[4]
Improved long-term prognostic value of coronary CT angiography-derived plaque measures and clinical parameters on adverse cardiac outcome using machine learning.

Eur Radiol. 2021-1

[5]
The correlation of deep learning-based CAD-RADS evaluated by coronary computed tomography angiography with breast arterial calcification on mammography.

Sci Rep. 2020-7-13

[6]
Sequential Strategy Including FFR Plus Stress-CTP Impacts on Management of Patients with Stable Chest Pain: The Stress-CTP RIPCORD Study.

J Clin Med. 2020-7-8

[7]
From CT to artificial intelligence for complex assessment of plaque-associated risk.

Int J Cardiovasc Imaging. 2020-7-2

[8]
Artificial intelligence from A to Z: From neural network to legal framework.

Eur J Radiol. 2020-8

[9]
Low-Attenuation Noncalcified Plaque on Coronary Computed Tomography Angiography Predicts Myocardial Infarction: Results From the Multicenter SCOT-HEART Trial (Scottish Computed Tomography of the HEART).

Circulation. 2020-5-5

[10]
Comparison of Artificial Intelligence-Based Fully Automatic Chest CT Emphysema Quantification to Pulmonary Function Testing.

AJR Am J Roentgenol. 2020-3-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索