文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能利用冠状动脉计算机断层扫描血管造影和心肌灌注单光子发射计算机断层扫描的混合图像诊断冠状动脉狭窄的能力。

Ability of artificial intelligence to diagnose coronary artery stenosis using hybrid images of coronary computed tomography angiography and myocardial perfusion SPECT.

作者信息

Yoneyama Hiroto, Nakajima Kenichi, Taki Junichi, Wakabayashi Hiroshi, Matsuo Shinro, Konishi Takahiro, Okuda Koichi, Shibutani Takayuki, Onoguchi Masahisa, Kinuya Seigo

机构信息

Department of Radiological Technology, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641, Japan.

Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan.

出版信息

Eur J Hybrid Imaging. 2019 Mar 18;3(1):4. doi: 10.1186/s41824-019-0052-8.


DOI:10.1186/s41824-019-0052-8
PMID:34191159
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8212308/
Abstract

BACKGROUND: Detecting culprit coronary arteries in patients with ischemia using only myocardial perfusion single-photon emission computed tomography (SPECT) can be challenging. This study aimed to improve the detection of culprit regions using an artificial neural network (ANN) to analyze hybrid images of coronary computed tomography angiography (CCTA) and myocardial perfusion SPECT. METHODS: This study enrolled 59 patients with stable coronary artery disease (CAD) who had been assessed by coronary angiography within 60 days of myocardial perfusion SPECT. Two nuclear medicine physicians interpreted the myocardial perfusion SPECT and hybrid images with four grades of confidence, then drew regions on polar maps to identify culprit coronary arteries. The gold standard was determined by the consensus of two other nuclear cardiology specialist based on coronary angiography findings and clinical information. The ability to detect culprit coronary arteries was compared among experienced nuclear cardiologists and the ANN. Receiver operating characteristics (ROC) curves were analyzed and areas under the ROC curves (AUC) were determined. RESULTS: Using hybrid images, observer A detected CAD in the right (RCA), left anterior descending (LAD), and left circumflex (LCX) coronary arteries with 83.6%, 89.3%, and 94.4% accuracy, respectively and observer B did so with 72.9%, 84.2%, and 89.3%, respectively. The ANN was 79.1%, 89.8%, and 89.3% accurate for each coronary artery. Diagnostic accuracy was comparable between the ANN and experienced nuclear medicine physicians. The AUC was significantly improved using hybrid images in the RCA region (observer A: from 0.715 to 0.835, p = 0.0031; observer B: from 0.771 to 0.843, p = 0.042). To detect culprit coronary arteries in perfusion defects of the inferior wall without using hybrid images was problematic because the perfused areas of the LCX and RCA varied among individuals. CONCLUSIONS: Hybrid images of CCTA and myocardial perfusion SPECT are useful for detecting culprit coronary arteries. Diagnoses using artificial intelligence are comparable to that by nuclear medicine physicians.

摘要

背景:仅使用心肌灌注单光子发射计算机断层扫描(SPECT)来检测缺血患者的罪犯冠状动脉可能具有挑战性。本研究旨在利用人工神经网络(ANN)分析冠状动脉计算机断层扫描血管造影(CCTA)和心肌灌注SPECT的混合图像,以提高对罪犯区域的检测能力。 方法:本研究纳入了59例稳定型冠状动脉疾病(CAD)患者,这些患者在心肌灌注SPECT检查后60天内接受了冠状动脉造影评估。两名核医学医生对心肌灌注SPECT和混合图像进行解读,并给出四个置信等级,然后在极坐标图上绘制区域以识别罪犯冠状动脉。金标准由另外两名核心脏病学专家根据冠状动脉造影结果和临床信息共同确定。比较了经验丰富的核心脏病专家和ANN检测罪犯冠状动脉的能力。分析了受试者工作特征(ROC)曲线并确定了ROC曲线下面积(AUC)。 结果:使用混合图像时,观察者A检测右冠状动脉(RCA)、左前降支(LAD)和左旋支(LCX)冠状动脉中CAD的准确率分别为83.6%、89.3%和94.4%,观察者B的准确率分别为72.9%、84.2%和89.3%。ANN对每条冠状动脉的准确率分别为79.1%、89.8%和89.3%。ANN与经验丰富的核医学医生的诊断准确率相当。在RCA区域使用混合图像时,AUC显著提高(观察者A:从0.715提高到0.835,p = 0.0031;观察者B:从0.771提高到0.843,p = 0.042)。在不使用混合图像的情况下,检测下壁灌注缺损中的罪犯冠状动脉存在问题,因为LCX和RCA的灌注区域因人而异。 结论:CCTA和心肌灌注SPECT的混合图像有助于检测罪犯冠状动脉。使用人工智能进行的诊断与核医学医生的诊断相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4169/8212308/44f04b0569f0/41824_2019_52_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4169/8212308/c973f9e7c039/41824_2019_52_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4169/8212308/b82a5091b0dc/41824_2019_52_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4169/8212308/d032cbd753e1/41824_2019_52_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4169/8212308/e0759314f36d/41824_2019_52_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4169/8212308/e6c9c2e0bea0/41824_2019_52_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4169/8212308/8b911fd72db7/41824_2019_52_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4169/8212308/44f04b0569f0/41824_2019_52_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4169/8212308/c973f9e7c039/41824_2019_52_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4169/8212308/b82a5091b0dc/41824_2019_52_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4169/8212308/d032cbd753e1/41824_2019_52_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4169/8212308/e0759314f36d/41824_2019_52_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4169/8212308/e6c9c2e0bea0/41824_2019_52_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4169/8212308/8b911fd72db7/41824_2019_52_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4169/8212308/44f04b0569f0/41824_2019_52_Fig7_HTML.jpg

相似文献

[1]
Ability of artificial intelligence to diagnose coronary artery stenosis using hybrid images of coronary computed tomography angiography and myocardial perfusion SPECT.

Eur J Hybrid Imaging. 2019-3-18

[2]
Accuracy of an artificial neural network for detecting a regional abnormality in myocardial perfusion SPECT.

Ann Nucl Med. 2019-2

[3]
Usefulness of Single Photon Emission Computed Tomography/Computed Tomography Fusion-Hybrid Imaging to Evaluate Coronary Artery Disorders in Patients with a History of Kawasaki Disease.

J Nippon Med Sch. 2016

[4]
Comparison of Myocardial Ischemia Detection Between Semiconductor and Conventional Anger-type Three-detector SPECT.

Ann Nucl Cardiol. 2021

[5]
Correlation of Morphological and Functional Cardiac Images: Fusion of Myocardial Perfusion SPECT and CT Angiography.

Mol Imaging Radionucl Ther. 2022-6-27

[6]
Artificial neural network retrained to detect myocardial ischemia using a Japanese multicenter database.

Ann Nucl Med. 2018-6

[7]
Comparison of Coronary CT Angiography, SPECT, PET, and Hybrid Imaging for Diagnosis of Ischemic Heart Disease Determined by Fractional Flow Reserve.

JAMA Cardiol. 2017-10-1

[8]
[Myocardial perfusion scintigraphy with Tc-99m MIBI in patients with left bundle branch block: Visual quantification of the anteroseptal perfusion imaging for the diagnosis of left anterior descending artery stenosis].

Cardiovasc J S Afr. 2005

[9]
Quantification of myocardial perfusion SPECT using freeware package (cardioBull).

Ann Nucl Med. 2011-6-23

[10]
Comparison of sulfur hexafluoride microbubble (SonoVue)-enhanced myocardial contrast echocardiography with gated single-photon emission computed tomography for detection of significant coronary artery disease: a large European multicenter study.

J Am Coll Cardiol. 2013-6-13

引用本文的文献

[1]
The Role of Artificial Intelligence and Machine Learning in Cardiovascular Imaging and Diagnosis.

Cureus. 2024-9-2

[2]
Computed Tomography Evaluation of Coronary Atherosclerosis: The Road Travelled, and What Lies Ahead.

Diagnostics (Basel). 2024-9-23

[3]
The value of CCTA combined with machine learning for predicting angina pectoris in the anomalous origin of the right coronary artery.

Biomed Eng Online. 2024-9-12

[4]
Revolutionizing Cardiac Imaging: A Scoping Review of Artificial Intelligence in Echocardiography, CTA, and Cardiac MRI.

J Imaging. 2024-8-8

[5]
Technological Advances in SPECT and SPECT/CT Imaging.

Diagnostics (Basel). 2024-7-4

[6]
Advancements in artificial intelligence-driven techniques for interventional cardiology.

Cardiol J. 2024

[7]
Validation of the commercial coronary computed tomographic angiography artificial intelligence for coronary artery stenosis: a cross-sectional study.

Quant Imaging Med Surg. 2023-6-1

[8]
Artificial intelligence in atherosclerotic disease: Applications and trends.

Front Cardiovasc Med. 2023-1-19

[9]
Artificial Intelligence in Coronary Computed Tomography Angiography: From Anatomy to Prognosis.

Biomed Res Int. 2020

本文引用的文献

[1]
Multimodality Image Fusion for Coronary Artery Disease Detection: Concepts and Latest Developments.

Ann Nucl Cardiol. 2018

[2]
Prognostic impact of reducing myocardial ischemia identified using ECG-gated myocardial perfusion SPECT in Japanese patients with coronary artery disease: J-ACCESS 4 study.

Int J Cardiol. 2018-5-24

[3]
Artificial neural network retrained to detect myocardial ischemia using a Japanese multicenter database.

Ann Nucl Med. 2018-6

[4]
Feasibility of combined risk stratification with coronary CT angiography and stress myocardial SPECT in patients with chronic coronary artery disease.

Ann Nucl Med. 2018-1

[5]
Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images: a Japanese multicenter study.

Eur J Nucl Med Mol Imaging. 2017-9-26

[6]
Comparison of Coronary CT Angiography, SPECT, PET, and Hybrid Imaging for Diagnosis of Ischemic Heart Disease Determined by Fractional Flow Reserve.

JAMA Cardiol. 2017-10-1

[7]
Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis.

Eur Heart J. 2017-2-14

[8]
ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers.

J Nucl Cardiol. 2016-6

[9]
Diagnostic Performance of Artificial Neural Network for Detecting Ischemia in Myocardial Perfusion Imaging.

Circ J. 2015

[10]
Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population.

J Nucl Cardiol. 2015-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索