Suppr超能文献

基于投影的双能虚拟单能量卷积神经网络与超分辨技术改善数字胸部断层合成图像质量

Improved digital chest tomosynthesis image quality by use of a projection-based dual-energy virtual monochromatic convolutional neural network with super resolution.

机构信息

School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan.

出版信息

PLoS One. 2020 Dec 31;15(12):e0244745. doi: 10.1371/journal.pone.0244745. eCollection 2020.

Abstract

We developed a novel dual-energy (DE) virtual monochromatic (VM) very-deep super-resolution (VDSR) method with an unsharp masking reconstruction algorithm (DE-VM-VDSR) that uses projection data to improve the nodule contrast and reduce ripple artifacts during chest digital tomosynthesis (DT). For estimating the residual errors from high-resolution and multiscale VM images from the projection space, the DE-VM-VDSR algorithm employs a training network (mini-batch stochastic gradient-descent algorithm with momentum) and a hybrid super-resolution (SR) image [simultaneous algebraic reconstruction technique (SART) total-variation (TV) first-iterative shrinkage-thresholding algorithm (FISTA); SART-TV-FISTA] that involves subjective reconstruction with bilateral filtering (BF) [DE-VM-VDSR with BF]. DE-DT imaging was accomplished by pulsed X-ray exposures rapidly switched between low (60 kV, 37 projection) and high (120 kV, 37 projection) tube-potential kVp by employing a 40° swing angle. This was followed by comparison of images obtained employing the conventional polychromatic filtered backprojection (FBP), SART, SART-TV-FISTA, and DE-VM-SART-TV-FISTA algorithms. The improvements in contrast, ripple artifacts, and resolution were compared using the signal-difference-to-noise ratio (SDNR), Gumbel distribution of the largest variations, radial modulation transfer function (radial MTF) for a chest phantom with simulated ground-glass opacity (GGO) nodules, and noise power spectrum (NPS) for uniform water phantom. The novel DE-VM-VDSR with BF improved the overall performance in terms of SDNR (DE-VM-VDSR with BF: 0.1603, without BF: 0.1517; FBP: 0.0521; SART: 0.0645; SART-TV-FISTA: 0.0984; and DE-VM-SART-TV-FISTA: 0.1004), obtained a Gumbel distribution that yielded good images showing the type of simulated GGO nodules used in the chest phantom, and reduced the ripple artifacts. The NPS of DE-VM-VDSR with BF showed the lowest noise characteristics in the high-frequency region (~0.8 cycles/mm). The DE-VM-VDSR without BF yielded an improved resolution relative to that of the conventional reconstruction algorithms for radial MTF analysis (0.2-0.3 cycles/mm). Finally, based on the overall image quality, DE-VM-VDSR with BF improved the contrast and reduced the high-frequency ripple artifacts and noise.

摘要

我们开发了一种新的双能(DE)虚拟单色(VM)超分辨率(VDSR)方法,该方法使用投影数据来提高结节对比度并减少胸部数字断层合成(DT)中的波纹伪影。为了从高分辨率和多尺度 VM 图像中估计投影空间中的残余误差,DE-VM-VDSR 算法采用了训练网络(具有动量的批量随机梯度下降算法)和混合超分辨率(SR)图像 [同时代数重建技术(SART)总变差(TV)第一迭代收缩阈值算法(FISTA);SART-TV-FISTA],涉及主观重建与双边滤波(BF)[DE-VM-VDSR 与 BF]。DE-DT 成像通过使用 40°摆角快速在低(60kV,37 个投影)和高(120kV,37 个投影)管电压 kVp 之间切换脉冲 X 射线曝光来实现。然后比较使用传统多色滤波反投影(FBP)、SART、SART-TV-FISTA 和 DE-VM-SART-TV-FISTA 算法获得的图像。使用信号差异噪声比(SDNR)、最大变化的 Gumbel 分布、具有模拟磨玻璃混浊(GGO)结节的胸部体模的径向调制传递函数(radial MTF)和均匀水模体的噪声功率谱(NPS)比较对比度、波纹伪影和分辨率的改善情况。新型的带 BF 的 DE-VM-VDSR 提高了整体性能,在 SDNR 方面(带 BF 的 DE-VM-VDSR:0.1603,不带 BF 的:0.1517;FBP:0.0521;SART:0.0645;SART-TV-FISTA:0.0984;DE-VM-SART-TV-FISTA:0.1004),获得了良好的 Gumbel 分布图像,显示了用于胸部体模的模拟 GGO 结节的类型,并减少了波纹伪影。带 BF 的 DE-VM-VDSR 的 NPS 在高频区域(~0.8 周期/mm)表现出最低的噪声特性。DE-VM-VDSR 无 BF 对径向 MTF 分析(0.2-0.3 周期/mm)的常规重建算法的分辨率有了提高。最后,基于整体图像质量,带 BF 的 DE-VM-VDSR 提高了对比度并减少了高频波纹伪影和噪声。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1368/7774945/1c366a6bb5e5/pone.0244745.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验