IMT Atlantique, LaTIM U1101 INSERM, UBL, Brest, France.
Service de médecine néonatale et réanimation pédiatrique, CHU de Reims, France.
Comput Med Imaging Graph. 2019 Oct;77:101647. doi: 10.1016/j.compmedimag.2019.101647. Epub 2019 Aug 14.
The purpose of super-resolution approaches is to overcome the hardware limitations and the clinical requirements of imaging procedures by reconstructing high-resolution images from low-resolution acquisitions using post-processing methods. Super-resolution techniques could have strong impacts on structural magnetic resonance imaging when focusing on cortical surface or fine-scale structure analysis for instance. In this paper, we study deep three-dimensional convolutional neural networks for the super-resolution of brain magnetic resonance imaging data. First, our work delves into the relevance of several factors in the performance of the purely convolutional neural network-based techniques for the monomodal super-resolution: optimization methods, weight initialization, network depth, residual learning, filter size in convolution layers, number of the filters, training patch size and number of training subjects. Second, our study also highlights that one single network can efficiently handle multiple arbitrary scaling factors based on a multiscale training approach. Third, we further extend our super-resolution networks to the multimodal super-resolution using intermodality priors. Fourth, we investigate the impact of transfer learning skills onto super-resolution performance in terms of generalization among different datasets. Lastly, the learnt models are used to enhance real clinical low-resolution images. Results tend to demonstrate the potential of deep neural networks with respect to practical medical image applications.
超分辨率方法的目的是通过后处理方法从低分辨率采集重建高分辨率图像,从而克服硬件限制和成像过程的临床要求。例如,当专注于皮质表面或精细结构分析时,超分辨率技术可能对结构磁共振成像产生重大影响。在本文中,我们研究了用于大脑磁共振成像数据超分辨率的深度三维卷积神经网络。首先,我们的工作深入研究了基于纯卷积神经网络的技术在单模态超分辨率中的几个因素的相关性:优化方法、权重初始化、网络深度、残差学习、卷积层中的滤波器大小、滤波器数量、训练补丁大小和训练对象数量。其次,我们的研究还强调,基于多尺度训练方法,单个网络可以有效地处理多个任意缩放因子。第三,我们进一步将我们的超分辨率网络扩展到使用模态间先验的多模态超分辨率。第四,我们研究了迁移学习技能对不同数据集之间泛化的超分辨率性能的影响。最后,学习到的模型用于增强真实的临床低分辨率图像。结果倾向于证明深度神经网络在实际医学图像应用中的潜力。