Suppr超能文献

溶解气体如何影响产氢的声化学过程?热力学和机理效应概述——关于“热点理论”

How do dissolved gases affect the sonochemical process of hydrogen production? An overview of thermodynamic and mechanistic effects - On the "hot spot theory".

作者信息

Kerboua Kaouther, Merouani Slimane, Hamdaoui Oualid, Alghyamah Abdulaziz, Islam Md H, Hansen Henrik E, Pollet Bruno G

机构信息

Higher School of Industrial Technologies, Department of Second Cycle, P.O. Box 218, 23000 Annaba, Algeria.

Laboratory of Environmental Process Engineering, Faculty of Process Engineering, University Salah Boubnider - Constantine 3, 25000 Constantine, Algeria.

出版信息

Ultrason Sonochem. 2021 Apr;72:105422. doi: 10.1016/j.ultsonch.2020.105422. Epub 2020 Dec 24.

Abstract

Although most of researchers agree on the elementary reactions behind the sonolytic formation of molecular hydrogen (H) from water, namely the radical attack of HO and HO and the free radicals recombination, several recent papers ignore the intervention of the dissolved gas molecules in the kinetic pathways of free radicals, and hence may wrongly assess the effect of dissolved gases on the sonochemical production of hydrogen. One may fairly ask to which extent is it acceptable to ignore the role of the dissolved gas and its eventual decomposition inside the acoustic cavitation bubble? The present opinion paper discusses numerically the ways in which the nature of dissolved gas, i.e., N, O, Ar and air, may influence the kinetics of sonochemical hydrogen formation. The model evaluates the extent of direct physical effects, i.e., dynamics of bubble oscillation and collapse events if any, against indirect chemical effects, i.e., the chemical reactions of free radicals formation and consequently hydrogen emergence, it demonstrates the improvement in the sonochemical hydrogen production under argon and sheds light on several misinterpretations reported in earlier works, due to wrong assumptions mainly related to initial conditions. The paper also highlights the role of dissolved gases in the nature of created cavitation and hence the eventual bubble population phenomena that may prevent the achievement of the sonochemical activity. This is particularly demonstrated experimentally using a 20 kHz Sinaptec transducer and a Photron SA 5 high speed camera, in the case of CO-saturated water where degassing bubbles are formed instead of transient cavitation.

摘要

尽管大多数研究人员认同由水通过声解作用生成分子氢(H)背后的基本反应,即羟基自由基(HO·)和氢氧根离子自由基(HO-·)的自由基攻击以及自由基重组,但最近的几篇论文忽略了溶解气体分子在自由基动力学途径中的干预,因此可能错误地评估了溶解气体对声化学制氢的影响。人们可能会合理地问,在何种程度上可以忽略溶解气体的作用及其在声空化泡内最终的分解?本观点论文从数值上讨论了溶解气体的性质,即氮气(N₂)、氧气(O₂)、氩气(Ar)和空气,可能影响声化学制氢动力学的方式。该模型评估了直接物理效应的程度,即气泡振荡和崩溃事件(如果有的话)的动力学,与间接化学效应,即自由基形成的化学反应以及随之而来的氢气产生之间的关系,它展示了在氩气环境下声化学制氢的改善,并揭示了早期工作中由于主要与初始条件相关的错误假设而报告的一些误解。本文还强调了溶解气体在产生的空化性质中的作用,以及因此可能阻止实现声化学活性的最终气泡群体现象。这在使用20kHz的Sinaptec换能器和Photron SA 5高速摄像机进行的实验中得到了特别证明,在二氧化碳(CO₂)饱和水的情况下,形成的是脱气气泡而不是瞬态空化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验