Suppr超能文献

用于物联网的开源联邦学习框架:比较综述与分析

Open-Source Federated Learning Frameworks for IoT: A Comparative Review and Analysis.

作者信息

Kholod Ivan, Yanaki Evgeny, Fomichev Dmitry, Shalugin Evgeniy, Novikova Evgenia, Filippov Evgeny, Nordlund Mats

机构信息

Faculty of Computer Science and Technology, Saint Petersburg Electrotechnical University "LETI", Saint Petersburg 197376, Russia.

Smartilizer Rus LLC, Saint Petersburg 197376, Russia.

出版信息

Sensors (Basel). 2020 Dec 29;21(1):167. doi: 10.3390/s21010167.

Abstract

The rapid development of Internet of Things (IoT) systems has led to the problem of managing and analyzing the large volumes of data that they generate. Traditional approaches that involve collection of data from IoT devices into one centralized repository for further analysis are not always applicable due to the large amount of collected data, the use of communication channels with limited bandwidth, security and privacy requirements, etc. Federated learning (FL) is an emerging approach that allows one to analyze data directly on data sources and to federate the results of each analysis to yield a result as traditional centralized data processing. FL is being actively developed, and currently, there are several open-source frameworks that implement it. This article presents a comparative review and analysis of the existing open-source FL frameworks, including their applicability in IoT systems. The authors evaluated the following features of the frameworks: ease of use and deployment, development, analysis capabilities, accuracy, and performance. Three different data sets were used in the experiments-two signal data sets of different volumes and one image data set. To model low-power IoT devices, computing nodes with small resources were defined in the testbed. The research results revealed FL frameworks that could be applied in the IoT systems now, but with certain restrictions on their use.

摘要

物联网(IoT)系统的快速发展带来了管理和分析其产生的大量数据的问题。由于收集到的数据量巨大、使用带宽有限的通信渠道、安全和隐私要求等,将物联网设备的数据收集到一个集中存储库进行进一步分析的传统方法并不总是适用。联邦学习(FL)是一种新兴方法,它允许直接在数据源上分析数据,并将每次分析的结果联合起来,以产生与传统集中式数据处理相同的结果。FL正在积极发展,目前有几个开源框架来实现它。本文对现有的开源FL框架进行了比较综述和分析,包括它们在物联网系统中的适用性。作者评估了这些框架的以下特性:易用性和部署、开发、分析能力、准确性和性能。实验中使用了三个不同的数据集——两个不同大小的信号数据集和一个图像数据集。为了模拟低功耗物联网设备,在测试平台中定义了资源较少的计算节点。研究结果揭示了目前可应用于物联网系统的FL框架,但在使用上有一定限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/446d/7794892/ac37ad464d5a/sensors-21-00167-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验