Suppr超能文献

PPFL:一种用于利用不同医疗机构特定特征的个性化渐进式联邦学习方法。

PPFL: A personalized progressive federated learning method for leveraging different healthcare institution-specific features.

作者信息

Kim Tae Hyun, Yu Jae Yong, Jang Won Seok, Heo Sun Cheol, Sung MinDong, Hong JaeSeong, Chung KyungSoo, Park Yu Rang

机构信息

Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea.

Research Institute for Data Science and AI (Artificial Intelligence), Hallym University, Chuncheon-si, Gangwon-do, Republic of Korea.

出版信息

iScience. 2024 Sep 13;27(10):110943. doi: 10.1016/j.isci.2024.110943. eCollection 2024 Oct 18.

Abstract

Federated learning (FL) in healthcare allows the collaborative training of models on distributed data sources, while ensuring privacy and leveraging collective knowledge. However, as each institution collects data separately, conventional FL cannot leverage the different features depending on the institution. We proposed a personalized progressive FL (PPFL) approach that leverages client-specific features and evaluated with real-world datasets. We compared the performance of in-hospital mortality prediction between our model and conventional models based on accuracy and area under the receiver operating characteristic (AUROC). PPFL achieved an accuracy of 0.941 and AUROC of 0.948, which were higher than the scores of the local models and FedAvg algorithm. We also observed that PPFL achieved a similar performance for cancer data. We identified client-specific features that can contribute to mortality. PPFL is a personalized federated algorithm for heterogeneously distributed clients that expands the feature space for client-specific vertical feature information.

摘要

医疗保健领域的联邦学习(FL)允许在分布式数据源上进行模型的协作训练,同时确保隐私并利用集体知识。然而,由于每个机构分别收集数据,传统的联邦学习无法根据机构利用不同的特征。我们提出了一种个性化渐进式联邦学习(PPFL)方法,该方法利用特定于客户端的特征,并使用真实世界数据集进行评估。我们基于准确率和受试者工作特征曲线下面积(AUROC)比较了我们的模型与传统模型在院内死亡率预测方面的性能。PPFL实现了0.941的准确率和0.948的AUROC,高于本地模型和联邦平均算法的得分。我们还观察到PPFL在癌症数据上取得了类似的性能。我们确定了可能导致死亡的特定于客户端的特征。PPFL是一种针对异构分布式客户端的个性化联邦算法,它扩展了用于特定于客户端的垂直特征信息的特征空间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b8c/11460500/9c19f2c8b204/fx1.jpg

相似文献

1
PPFL: A personalized progressive federated learning method for leveraging different healthcare institution-specific features.
iScience. 2024 Sep 13;27(10):110943. doi: 10.1016/j.isci.2024.110943. eCollection 2024 Oct 18.
3
Analyzing the Impact of Personalization on Fairness in Federated Learning for Healthcare.
J Healthc Inform Res. 2024 Mar 23;8(2):181-205. doi: 10.1007/s41666-024-00164-7. eCollection 2024 Jun.
4
Federated Learning on Clinical Benchmark Data: Performance Assessment.
J Med Internet Res. 2020 Oct 26;22(10):e20891. doi: 10.2196/20891.
5
PSA-FL-CDM: A Novel Federated Learning-Based Consensus Model for Post-Stroke Assessment.
Sensors (Basel). 2024 Aug 6;24(16):5095. doi: 10.3390/s24165095.
6
Contrastive encoder pre-training-based clustered federated learning for heterogeneous data.
Neural Netw. 2023 Aug;165:689-704. doi: 10.1016/j.neunet.2023.06.010. Epub 2023 Jun 10.
8
Personalized Federated Learning for Institutional Prediction Model using Electronic Health Records: A Covariate Adjustment Approach.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10339940.
9
Boosted federated learning based on improved Particle Swarm Optimization for healthcare IoT devices.
Comput Biol Med. 2023 Sep;163:107195. doi: 10.1016/j.compbiomed.2023.107195. Epub 2023 Jun 22.
10
Federated Learning in Glaucoma: A Comprehensive Review and Future Perspectives.
Ophthalmol Glaucoma. 2025 Jan-Feb;8(1):92-105. doi: 10.1016/j.ogla.2024.08.004. Epub 2024 Aug 29.

本文引用的文献

1
Medical Federated Model With Mixture of Personalized and Shared Components.
IEEE Trans Pattern Anal Mach Intell. 2025 Jan;47(1):433-449. doi: 10.1109/TPAMI.2024.3470072. Epub 2024 Dec 4.
2
Personalized Federated Learning for Institutional Prediction Model using Electronic Health Records: A Covariate Adjustment Approach.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10339940.
4
Federated Learning for Medical Image Analysis with Deep Neural Networks.
Diagnostics (Basel). 2023 Apr 24;13(9):1532. doi: 10.3390/diagnostics13091532.
7
Towards Personalized Federated Learning.
IEEE Trans Neural Netw Learn Syst. 2023 Dec;34(12):9587-9603. doi: 10.1109/TNNLS.2022.3160699. Epub 2023 Nov 30.
8
Federated learning for predicting clinical outcomes in patients with COVID-19.
Nat Med. 2021 Oct;27(10):1735-1743. doi: 10.1038/s41591-021-01506-3. Epub 2021 Sep 15.
9
Cloud-Based Federated Learning Implementation Across Medical Centers.
JCO Clin Cancer Inform. 2021 Jan;5:1-11. doi: 10.1200/CCI.20.00060.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验