文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

联邦学习:概述、策略、应用、工具及未来发展方向。

Federated learning: Overview, strategies, applications, tools and future directions.

作者信息

Yurdem Betul, Kuzlu Murat, Gullu Mehmet Kemal, Catak Ferhat Ozgur, Tabassum Maliha

机构信息

Department of Electrical and Electronics Engineering, Izmir Bakircay University, Izmir, Turkey.

Batten College of Engineering and Technology, Old Dominion University, Norfolk, VA, USA.

出版信息

Heliyon. 2024 Sep 20;10(19):e38137. doi: 10.1016/j.heliyon.2024.e38137. eCollection 2024 Oct 15.


DOI:10.1016/j.heliyon.2024.e38137
PMID:39391509
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11466570/
Abstract

Federated learning (FL) is a distributed machine learning process, which allows multiple nodes to work together to train a shared model without exchanging raw data. It offers several key advantages, such as data privacy, security, efficiency, and scalability, by keeping data local and only exchanging model updates through the communication network. This review paper provides a comprehensive overview of federated learning, including its principles, strategies, applications, and tools along with opportunities, challenges, and future research directions. The findings of this paper emphasize that federated learning strategies can significantly help overcome privacy and confidentiality concerns, particularly for high-risk applications.

摘要

联邦学习(FL)是一种分布式机器学习过程,它允许多个节点协同工作以训练共享模型,而无需交换原始数据。通过将数据保持在本地,仅通过通信网络交换模型更新,它具有数据隐私、安全、高效和可扩展性等几个关键优势。这篇综述论文全面概述了联邦学习,包括其原理、策略、应用和工具,以及机遇、挑战和未来研究方向。本文的研究结果强调,联邦学习策略可以显著帮助克服隐私和保密问题,特别是对于高风险应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/7c562d6f93e6/gr017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/4879e408251b/gr001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/6da15aecee65/gr002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/7f0db23f8c65/gr003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/9989feb85748/gr004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/f5fb953545b4/gr005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/81adcbf259c5/gr006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/24f84d6f3fd5/gr007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/ece641fd3752/gr008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/6420a6377269/gr009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/b654595b120b/gr010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/6783adfde157/gr011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/ca33bdca680f/gr012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/d23e9a1a2f24/gr013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/95d63f7ab0b2/gr014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/0c3bd7701137/gr015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/eed2a0940be9/gr016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/7c562d6f93e6/gr017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/4879e408251b/gr001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/6da15aecee65/gr002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/7f0db23f8c65/gr003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/9989feb85748/gr004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/f5fb953545b4/gr005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/81adcbf259c5/gr006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/24f84d6f3fd5/gr007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/ece641fd3752/gr008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/6420a6377269/gr009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/b654595b120b/gr010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/6783adfde157/gr011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/ca33bdca680f/gr012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/d23e9a1a2f24/gr013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/95d63f7ab0b2/gr014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/0c3bd7701137/gr015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/eed2a0940be9/gr016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/7c562d6f93e6/gr017.jpg

相似文献

[1]
Federated learning: Overview, strategies, applications, tools and future directions.

Heliyon. 2024-9-20

[2]
A survey on federated learning: challenges and applications.

Int J Mach Learn Cybern. 2023

[3]
Evaluating Federated Learning Simulators: A Comparative Analysis of Horizontal and Vertical Approaches.

Sensors (Basel). 2024-8-9

[4]
Handling Privacy-Sensitive Medical Data With Federated Learning: Challenges and Future Directions.

IEEE J Biomed Health Inform. 2023-2

[5]
A Review of Privacy Enhancement Methods for Federated Learning in Healthcare Systems.

Int J Environ Res Public Health. 2023-8-7

[6]
The FeatureCloud Platform for Federated Learning in Biomedicine: Unified Approach.

J Med Internet Res. 2023-7-12

[7]
Federated learning for 6G-enabled secure communication systems: a comprehensive survey.

Artif Intell Rev. 2023-3-12

[8]
Federated Learning in Glaucoma: A Comprehensive Review and Future Perspectives.

Ophthalmol Glaucoma. 2025

[9]
A Survey on Heterogeneity Taxonomy, Security and Privacy Preservation in the Integration of IoT, Wireless Sensor Networks and Federated Learning.

Sensors (Basel). 2024-2-1

[10]
The value of federated learning during and post-COVID-19.

Int J Qual Health Care. 2021-3-4

引用本文的文献

[1]
Role of artificial intelligence-based ocular biomarkers in hepatobiliary diseases: A scoping review.

World J Hepatol. 2025-8-27

[2]
Navigating Healthcare AI Governance: the Comprehensive Algorithmic Oversight and Stewardship Framework for Risk and Equity.

Health Care Anal. 2025-8-13

[3]
Deep Learning Network Selection and Optimized Information Fusion for Enhanced COVID-19 Detection: A Literature Review.

Diagnostics (Basel). 2025-7-21

[4]
An explainable federated blockchain framework with privacy-preserving AI optimization for securing healthcare data.

Sci Rep. 2025-7-1

[5]
Brain glucose and ketone metabolism in first-episode psychosis: Neuroimaging and brain metabolism before and after antipsychotic treatment: The protocol for the CAST-ATP study.

PLoS One. 2025-6-30

[6]
Federated learning for crop yield prediction: A comprehensive review of techniques and applications.

MethodsX. 2025-5-30

[7]
From Sensors to Data Intelligence: Leveraging IoT, Cloud, and Edge Computing with AI.

Sensors (Basel). 2025-3-12

[8]
The Artificial Intelligence-Enhanced Echocardiographic Detection of Congenital Heart Defects in the Fetus: A Mini-Review.

Medicina (Kaunas). 2025-3-21

[9]
Image-based food monitoring and dietary management for patients living with diabetes: a scoping review of calorie counting applications.

Front Nutr. 2025-3-27

本文引用的文献

[1]
Federated Learning in Edge Computing: A Systematic Survey.

Sensors (Basel). 2022-1-7

[2]
Data Anonymization for Pervasive Health Care: Systematic Literature Mapping Study.

JMIR Med Inform. 2021-10-15

[3]
Facing small and biased data dilemma in drug discovery with enhanced federated learning approaches.

Sci China Life Sci. 2022-3

[4]
GRAM: Graph-based Attention Model for Healthcare Representation Learning.

KDD. 2017-8

[5]
Open-Source Federated Learning Frameworks for IoT: A Comparative Review and Analysis.

Sensors (Basel). 2020-12-29

[6]
A Privacy-Preserving Multi-Task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition.

Front Neurorobot. 2020-1-14

[7]
Association between obesity phenotypes of insulin resistance and risk of type 2 diabetes in African Americans: The Jackson Heart Study.

J Clin Transl Endocrinol. 2019-11-20

[8]
Mastering the game of Go with deep neural networks and tree search.

Nature. 2016-1-28

[9]
More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server.

Adv Neural Inf Process Syst. 2013

[10]
A systematic review of barriers to data sharing in public health.

BMC Public Health. 2014-11-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索