Suppr超能文献

联邦学习:概述、策略、应用、工具及未来发展方向。

Federated learning: Overview, strategies, applications, tools and future directions.

作者信息

Yurdem Betul, Kuzlu Murat, Gullu Mehmet Kemal, Catak Ferhat Ozgur, Tabassum Maliha

机构信息

Department of Electrical and Electronics Engineering, Izmir Bakircay University, Izmir, Turkey.

Batten College of Engineering and Technology, Old Dominion University, Norfolk, VA, USA.

出版信息

Heliyon. 2024 Sep 20;10(19):e38137. doi: 10.1016/j.heliyon.2024.e38137. eCollection 2024 Oct 15.

Abstract

Federated learning (FL) is a distributed machine learning process, which allows multiple nodes to work together to train a shared model without exchanging raw data. It offers several key advantages, such as data privacy, security, efficiency, and scalability, by keeping data local and only exchanging model updates through the communication network. This review paper provides a comprehensive overview of federated learning, including its principles, strategies, applications, and tools along with opportunities, challenges, and future research directions. The findings of this paper emphasize that federated learning strategies can significantly help overcome privacy and confidentiality concerns, particularly for high-risk applications.

摘要

联邦学习(FL)是一种分布式机器学习过程,它允许多个节点协同工作以训练共享模型,而无需交换原始数据。通过将数据保持在本地,仅通过通信网络交换模型更新,它具有数据隐私、安全、高效和可扩展性等几个关键优势。这篇综述论文全面概述了联邦学习,包括其原理、策略、应用和工具,以及机遇、挑战和未来研究方向。本文的研究结果强调,联邦学习策略可以显著帮助克服隐私和保密问题,特别是对于高风险应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf11/11466570/4879e408251b/gr001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验