Suppr超能文献

通过巨正则蒙特卡罗模拟和机器学习筛选用于吸附驱动渗透热机的金属有机框架。

Screening metal-organic frameworks for adsorption-driven osmotic heat engines via grand canonical Monte Carlo simulations and machine learning.

作者信息

Long Rui, Xia Xiaoxiao, Zhao Yanan, Li Song, Liu Zhichun, Liu Wei

机构信息

School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.

出版信息

iScience. 2020 Dec 9;24(1):101914. doi: 10.1016/j.isci.2020.101914. eCollection 2021 Jan 22.

Abstract

Adsorption-driven osmotic heat engines offer an alternative way for harvesting low-grade waste heat below 80°C. In this study, we performed a high-throughput computational screening based on grand canonical Monte Carlo simulations to identify the high-performance metal-organic frameworks (MOFs) from 1322 computationally ready experimental MOF structures for adsorption-driven osmotic heat engines with LiCl-methanol as the working fluid. Structure-property relationship analysis reveals that MOFs exhibiting high energy efficiency possess large working capacity, pore size and surface area, and moderate adsorption enthalpy comparable to the evaporation enthalpy. Furthermore, machine learning is employed to accelerate the computational screening for satisfied MOFs via the structure properties. The optimal structure properties of the MOFs are further identified via the ensemble-based regression model by optimizing the energy efficiency via the genetic algorithm, which shed light on rationally designing and fabricating MOFs for desired heat-to-electricity conversion.

摘要

吸附驱动的渗透热机为收集80°C以下的低品位废热提供了一种替代方法。在本研究中,我们基于巨正则蒙特卡罗模拟进行了高通量计算筛选,以从1322个计算就绪的实验性金属有机框架(MOF)结构中识别出以LiCl-甲醇为工作流体的吸附驱动渗透热机的高性能MOF。结构-性能关系分析表明,具有高能效的MOF具有较大的工作容量、孔径和表面积,以及与蒸发焓相当的中等吸附焓。此外,利用机器学习通过结构属性加速对满意MOF的计算筛选。通过基于遗传算法优化能量效率的基于系综的回归模型,进一步确定了MOF的最佳结构属性,这为合理设计和制造用于所需热电转换的MOF提供了思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e86a/7772570/1ca772fcae82/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验