Suppr超能文献

用于大气水收集的金属有机框架的机器学习辅助计算筛选

Machine Learning-Assisted Computational Screening of Metal-Organic Frameworks for Atmospheric Water Harvesting.

作者信息

Li Lifeng, Shi Zenan, Liang Hong, Liu Jie, Qiao Zhiwei

机构信息

Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.

Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.

出版信息

Nanomaterials (Basel). 2022 Jan 3;12(1):159. doi: 10.3390/nano12010159.

Abstract

Atmospheric water harvesting by strong adsorbents is a feasible method of solving the shortage of water resources, especially for arid regions. In this study, a machine learning (ML)-assisted high-throughput computational screening is employed to calculate the capture of HO from N and O for 6013 computation-ready, experimental metal-organic frameworks (CoRE-MOFs) and 137,953 hypothetical MOFs (hMOFs). Through the univariate analysis of MOF structure-performance relationships, is shown to be a key descriptor. Moreover, three ML algorithms (random forest, gradient boosted regression trees, and neighbor component analysis (NCA)) are applied to hunt for the complicated interrelation between six descriptors and performance. After the optimizing strategy of grid search and five-fold cross-validation is performed, three ML can effectively build the predictive model for CoRE-MOFs, and the accuracy of NCA can reach 0.97. In addition, based on the relative importance of the descriptors by ML, it can be quantitatively concluded that the is dominant in governing the capture of HO. Besides, the NCA model trained by 6013 CoRE-MOFs can predict the selectivity of hMOFs with a of 0.86, which is more universal than other models. Finally, 10 CoRE-MOFs and 10 hMOFs with high performance are identified. The computational screening and prediction of ML could provide guidance and inspiration for the development of materials for water harvesting in the atmosphere.

摘要

利用强吸附剂收集大气水是解决水资源短缺问题的一种可行方法,特别是对于干旱地区。在本研究中,采用机器学习辅助的高通量计算筛选方法,对6013个可用于计算的实验性金属有机框架(CoRE-MOFs)和137953个假设的金属有机框架(hMOFs)从N和O中捕获HO的情况进行计算。通过对MOF结构-性能关系的单变量分析,表明[此处缺失具体内容]是一个关键描述符。此外,应用三种机器学习算法(随机森林、梯度提升回归树和邻域成分分析(NCA))来寻找六个描述符与性能之间的复杂相互关系。在执行网格搜索和五折交叉验证的优化策略后,三种机器学习算法能够有效地为CoRE-MOFs建立预测模型,NCA的准确率可达0.97。此外,基于机器学习得出的描述符的相对重要性,可以定量得出[此处缺失具体内容]在控制HO捕获方面占主导地位。此外,由6013个CoRE-MOFs训练的NCA模型能够以0.86的[此处缺失具体内容]预测hMOFs的选择性,这比其他模型更具通用性。最后,确定了10个高性能的CoRE-MOFs和10个高性能的hMOFs。机器学习的计算筛选和预测可为大气水收集材料的开发提供指导和启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b412/8746952/90f83dd68bf2/nanomaterials-12-00159-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验