Suppr超能文献

pMAT:一个用于光纤光度数据分析的开源软件套件。

pMAT: An open-source software suite for the analysis of fiber photometry data.

机构信息

Department of Psychology, Rutgers, The State University of New Jersey, United States of America.

Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, United States of America.

出版信息

Pharmacol Biochem Behav. 2021 Feb;201:173093. doi: 10.1016/j.pbb.2020.173093. Epub 2020 Dec 29.

Abstract

The combined development of new technologies for neuronal recordings and the development of novel sensors for recording both cellular activity and neurotransmitter binding has ushered in a new era for the field of neuroscience. Among these new technologies is fiber photometry, a technique wherein an implanted fiber optic is used to record signals from genetically encoded fluorescent sensors in bulk tissue. Fiber photometry has been widely adapted due to its cost-effectiveness, ability to examine the activity of neurons with specific anatomical or genetic identities, and the ability to use these highly modular systems to record from one or more sensors or brain sites in both superficial and deep-brain structures. Despite these many benefits, one major hurdle for laboratories adopting this technique is the steep learning curve associated with the analysis of fiber photometry data. This has been further complicated by a lack of standardization in analysis pipelines. In the present communication, we present pMAT, a 'photometry modular analysis tool' that allows users to accomplish common analysis routines through the use of a graphical user interface. This tool can be deployed in MATLAB and edited by more advanced users, but is also available as an independently deployable, open-source application.

摘要

新技术的发展使得神经元记录成为可能,新型传感器的发展也使得细胞活动和神经递质结合的记录成为可能,这为神经科学领域带来了新的时代。这些新技术包括光纤光度测定法,这是一种通过植入光纤来记录大容量组织中基因编码荧光传感器信号的技术。光纤光度测定法由于其成本效益、能够检查具有特定解剖或遗传身份的神经元的活性,以及能够使用这些高度模块化系统从浅层和深层脑结构中的一个或多个传感器或脑区进行记录,因此得到了广泛的应用。尽管有这些诸多优势,但采用这种技术的实验室面临的一个主要障碍是与光纤光度测定数据分析相关的陡峭学习曲线。由于缺乏分析管道的标准化,这一问题变得更加复杂。在本通讯中,我们介绍了 pMAT,这是一种“光度测定模块化分析工具”,它允许用户通过图形用户界面完成常见的分析例程。该工具可以在 MATLAB 中部署,并由更高级的用户进行编辑,但也可以作为独立可部署的开源应用程序使用。

相似文献

1
pMAT: An open-source software suite for the analysis of fiber photometry data.
Pharmacol Biochem Behav. 2021 Feb;201:173093. doi: 10.1016/j.pbb.2020.173093. Epub 2020 Dec 29.
2
A selected review of recent advances in the study of neuronal circuits using fiber photometry.
Pharmacol Biochem Behav. 2021 Feb;201:173113. doi: 10.1016/j.pbb.2021.173113. Epub 2021 Jan 12.
4
Long-term Fiber Photometry for Neuroscience Studies.
Neurosci Bull. 2019 Jun;35(3):425-433. doi: 10.1007/s12264-019-00379-4. Epub 2019 May 6.
5
Simultaneous GCaMP6-based fiber photometry and fMRI in rats.
J Neurosci Methods. 2017 Sep 1;289:31-38. doi: 10.1016/j.jneumeth.2017.07.002. Epub 2017 Jul 4.
6
Protocol for fiber photometry recording from deep brain regions in head-fixed mice.
STAR Protoc. 2024 Jun 21;5(2):103131. doi: 10.1016/j.xpro.2024.103131. Epub 2024 Jun 13.
7
Lights, fiber, action! A primer on in vivo fiber photometry.
Neuron. 2024 Mar 6;112(5):718-739. doi: 10.1016/j.neuron.2023.11.016. Epub 2023 Dec 15.
8
FiPhA: An Open-Source Platform for Fiber Photometry Analysis.
bioRxiv. 2023 Jul 28:2023.07.21.550098. doi: 10.1101/2023.07.21.550098.
9
GuPPy, a Python toolbox for the analysis of fiber photometry data.
Sci Rep. 2021 Dec 20;11(1):24212. doi: 10.1038/s41598-021-03626-9.
10
High-density multi-fiber photometry for studying large-scale brain circuit dynamics.
Nat Methods. 2019 Jun;16(6):553-560. doi: 10.1038/s41592-019-0400-4. Epub 2019 May 13.

引用本文的文献

2
Cocaine chemogenetics blunts drug-seeking by synthetic physiology.
Nature. 2025 Aug 27. doi: 10.1038/s41586-025-09427-8.
3
Leveraging Fiber Photometry to Decipher Neural Circuits Underlying Anxiety in Mice.
Fundam Clin Pharmacol. 2025 Oct;39(5):e70043. doi: 10.1111/fcp.70043.
4
Associative coding of conditioned fear in the thalamic nucleus reuniens in rodents and humans.
Commun Biol. 2025 Aug 1;8(1):1142. doi: 10.1038/s42003-025-08580-0.
5
FiPhoPHA-A Fiber Photometry Python Package for Post Hoc Analysis.
eNeuro. 2025 Aug 14;12(8). doi: 10.1523/ENEURO.0221-25.2025. Print 2025 Aug.
6
Optimized workflow for behavior-coupled fiber photometry experiment: improved data navigation and accessibility.
Front Neurosci. 2025 Jul 10;19:1601127. doi: 10.3389/fnins.2025.1601127. eCollection 2025.
7
A nociceptive amygdala-striatal pathway modulating affective-motivational pain.
Sci Adv. 2025 Jul 25;11(30):eado2837. doi: 10.1126/sciadv.ado2837. Epub 2025 Jul 23.
8
Cholinergic modulation of dopamine release drives effortful behavior.
bioRxiv. 2025 Jun 21:2025.06.18.660394. doi: 10.1101/2025.06.18.660394.
10
PASTa: An Open-Source Analysis and Signal Processing Toolbox for Fiber Photometry Data.
Curr Protoc. 2025 Jul;5(7):e70161. doi: 10.1002/cpz1.70161.

本文引用的文献

1
Directed Evolution of a Selective and Sensitive Serotonin Sensor via Machine Learning.
Cell. 2020 Dec 23;183(7):1986-2002.e26. doi: 10.1016/j.cell.2020.11.040. Epub 2020 Dec 16.
3
4
VTA Glutamatergic Neurons Mediate Innate Defensive Behaviors.
Neuron. 2020 Jul 22;107(2):368-382.e8. doi: 10.1016/j.neuron.2020.04.024. Epub 2020 May 21.
5
Fluorescent sensors for neuronal signaling.
Curr Opin Neurobiol. 2020 Aug;63:31-41. doi: 10.1016/j.conb.2020.02.007. Epub 2020 Mar 20.
6
Cooperative synaptic and intrinsic plasticity in a disynaptic limbic circuit drive stress-induced anhedonia and passive coping in mice.
Mol Psychiatry. 2021 Jun;26(6):1860-1879. doi: 10.1038/s41380-020-0686-8. Epub 2020 Mar 11.
8
A genetically encoded fluorescent sensor for in vivo imaging of GABA.
Nat Methods. 2019 Aug;16(8):763-770. doi: 10.1038/s41592-019-0471-2. Epub 2019 Jul 15.
9
High-performance calcium sensors for imaging activity in neuronal populations and microcompartments.
Nat Methods. 2019 Jul;16(7):649-657. doi: 10.1038/s41592-019-0435-6. Epub 2019 Jun 17.
10
High-density multi-fiber photometry for studying large-scale brain circuit dynamics.
Nat Methods. 2019 Jun;16(6):553-560. doi: 10.1038/s41592-019-0400-4. Epub 2019 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验