文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

增加模型容量的脑损伤分割任务间的知识迁移。

Knowledge transfer between brain lesion segmentation tasks with increased model capacity.

机构信息

School of Information and Electronics, Beijing Institute of Technology, Beijing, China.

School of Computer Science and Technology, Xidian University, Xi'an, China.

出版信息

Comput Med Imaging Graph. 2021 Mar;88:101842. doi: 10.1016/j.compmedimag.2020.101842. Epub 2020 Dec 25.


DOI:10.1016/j.compmedimag.2020.101842
PMID:33387812
Abstract

Convolutional neural networks (CNNs) have become an increasingly popular tool for brain lesion segmentation in recent years due to its accuracy and efficiency. However, CNN-based brain lesion segmentation generally requires a large amount of annotated training data, which can be costly for medical imaging. In many scenarios, only a few annotations of brain lesions are available. One common strategy to address the issue of limited annotated data is to transfer knowledge from a different yet relevant source task, where training data is abundant, to the target task of interest. Typically, a model can be pretrained for the source task, and then fine-tuned with the scarce training data associated with the target task. However, classic fine-tuning tends to make small modifications to the pretrained model, which could hinder its adaptation to the target task. Fine-tuning with increased model capacity has been shown to alleviate this negative impact in image classification problems. In this work, we extend the strategy of fine-tuning with increased model capacity to the problem of brain lesion segmentation, and then develop an advanced version that is better suitable for segmentation problems. First, we propose a vanilla strategy of increasing the capacity, where, like in the classification problem, the width of the network is augmented during fine-tuning. Second, because unlike image classification, in segmentation problems each voxel is associated with a labeling result, we further develop a spatially adaptive augmentation strategy during fine-tuning. Specifically, in addition to the vanilla width augmentation, we incorporate a module that computes a spatial map of the contribution of the information given by width augmentation in the final segmentation. For demonstration, the proposed method was applied to ischemic stroke lesion segmentation, where a model pretrained for brain tumor segmentation was fine-tuned, and the experimental results indicate the benefit of our method.

摘要

卷积神经网络(CNN)由于其准确性和效率,近年来已成为脑损伤分割的一种越来越受欢迎的工具。然而,基于 CNN 的脑损伤分割通常需要大量的标注训练数据,这对于医学成像来说可能是昂贵的。在许多情况下,只有少数脑损伤的标注数据。解决标注数据有限的问题的一种常见策略是将知识从不同但相关的源任务转移到感兴趣的目标任务,在源任务中,训练数据是丰富的。通常,可以对源任务进行模型预训练,然后使用与目标任务相关的少量训练数据进行微调。然而,经典的微调方法往往对预训练模型进行小的修改,这可能会阻碍其对目标任务的适应。在图像分类问题中,增加模型容量的微调已被证明可以减轻这种负面影响。在这项工作中,我们将增加模型容量的微调策略扩展到脑损伤分割问题,并进一步开发了一种更适合分割问题的高级版本。首先,我们提出了一种增加容量的香草策略,即在微调过程中增加网络的宽度,就像在分类问题中一样。其次,由于与图像分类不同,在分割问题中,每个体素都与一个标记结果相关联,我们在微调过程中进一步开发了一种空间自适应增强策略。具体来说,除了香草宽度增强外,我们还结合了一个模块,该模块计算了宽度增强在最终分割中给出的信息的空间映射。为了演示,我们将所提出的方法应用于缺血性中风损伤分割,其中对脑肿瘤分割进行了模型预训练,并进行了微调,实验结果表明了我们的方法的优势。

相似文献

[1]
Knowledge transfer between brain lesion segmentation tasks with increased model capacity.

Comput Med Imaging Graph. 2021-3

[2]
A transfer learning approach to few-shot segmentation of novel white matter tracts.

Med Image Anal. 2022-7

[3]
CarveMix: A simple data augmentation method for brain lesion segmentation.

Neuroimage. 2023-5-1

[4]
Domain- and task-specific transfer learning for medical segmentation tasks.

Comput Methods Programs Biomed. 2022-2

[5]
One-shot segmentation of novel white matter tracts via extensive data augmentation and adaptive knowledge transfer.

Med Image Anal. 2023-12

[6]
Volumetric white matter tract segmentation with nested self-supervised learning using sequential pretext tasks.

Med Image Anal. 2021-8

[7]
Domain-specific classification-pretrained fully convolutional network encoders for skin lesion segmentation.

Comput Biol Med. 2018-11-16

[8]
Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning.

IEEE Trans Med Imaging. 2018-7

[9]
Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets.

Comput Methods Programs Biomed. 2020-8

[10]
One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks.

Neuroimage Clin. 2018-12-10

引用本文的文献

[1]
Robust Ensemble of Two Different Multimodal Approaches to Segment 3D Ischemic Stroke Segmentation Using Brain Tumor Representation Among Multiple Center Datasets.

J Imaging Inform Med. 2024-10

[2]
Differential Diagnostic Value of Machine Learning-Based Models for Embolic Stroke.

Clin Appl Thromb Hemost. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索