文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

面向医学分割任务的域和任务特定迁移学习。

Domain- and task-specific transfer learning for medical segmentation tasks.

机构信息

Biomedical Engineering and Physics, Amsterdam UMC, Location AMC, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands; University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.

University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.

出版信息

Comput Methods Programs Biomed. 2022 Feb;214:106539. doi: 10.1016/j.cmpb.2021.106539. Epub 2021 Nov 23.


DOI:10.1016/j.cmpb.2021.106539
PMID:34875512
Abstract

BACKGROUND AND OBJECTIVES: Transfer learning is a valuable approach to perform medical image segmentation in settings with limited cases available for training convolutional neural networks (CNN). Both the source task and the source domain influence transfer learning performance on a given target medical image segmentation task. This study aims to assess transfer learning-based medical segmentation task performance for various source task and domain combinations. METHODS: CNNs were pre-trained on classification, segmentation, and self-supervised tasks on two domains: natural images and T1 brain MRI. Next, these CNNs were fine-tuned on three target T1 brain MRI segmentation tasks: stroke lesion, MS lesions, and brain anatomy segmentation. In all experiments, the CNN architecture and transfer learning strategy were the same. The segmentation accuracy on all target tasks was evaluated using the mIOU or Dice coefficients. The detection accuracy was evaluated for the stroke and MS lesion target tasks only. RESULTS: CNNs pre-trained on a segmentation task on the same domain as the target tasks resulted in higher or similar segmentation accuracy compared to other source task and domain combinations. Pre-training a CNN on ImageNet resulted in a comparable, but not consistently higher lesion detection rate, despite the amount of training data used being 10 times larger. CONCLUSIONS: This study suggests that optimal transfer learning for medical segmentation is achieved with a similar task and domain for pre-training. As a result, CNNs can be effectively pre-trained on smaller datasets by selecting a source domain and task similar to the target domain and task.

摘要

背景与目的:在用于训练卷积神经网络(CNN)的病例有限的情况下,迁移学习是一种进行医学图像分割的有效方法。源任务和源域都会影响给定的目标医学图像分割任务中迁移学习的性能。本研究旨在评估各种源任务和源域组合的基于迁移学习的医学分割任务性能。

方法:在两个域(自然图像和 T1 脑 MRI)上,对分类、分割和自监督任务进行了 CNN 预训练。接下来,在三个目标 T1 脑 MRI 分割任务(中风病变、MS 病变和脑解剖分割)上对这些 CNN 进行微调。在所有实验中,CNN 架构和迁移学习策略都是相同的。使用 mIOU 或 Dice 系数评估所有目标任务的分割准确性。仅对中风和 MS 病变目标任务评估检测准确性。

结果:与其他源任务和源域组合相比,在与目标任务相同的域上进行预训练的分割任务的 CNN 导致更高或相似的分割准确性。尽管使用的训练数据量是 10 倍,但在 ImageNet 上预训练 CNN 导致的病变检测率相当,但并非始终更高。

结论:本研究表明,对于医学分割,最佳的迁移学习是通过与目标域和任务相似的源域和任务进行预训练来实现的。因此,可以通过选择与目标域和任务相似的源域和任务,有效地在较小的数据集上对 CNN 进行预训练。

相似文献

[1]
Domain- and task-specific transfer learning for medical segmentation tasks.

Comput Methods Programs Biomed. 2022-2

[2]
Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.

Comput Methods Programs Biomed. 2020-6

[3]
One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks.

Neuroimage Clin. 2018-12-10

[4]
Detection of liver cirrhosis in standard T2-weighted MRI using deep transfer learning.

Eur Radiol. 2021-11

[5]
Knowledge transfer between brain lesion segmentation tasks with increased model capacity.

Comput Med Imaging Graph. 2021-3

[6]
Combined Transfer Learning and Test-Time Augmentation Improves Convolutional Neural Network-Based Semantic Segmentation of Prostate Cancer from Multi-Parametric MR Images.

Comput Methods Programs Biomed. 2021-10

[7]
Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation.

Comput Methods Programs Biomed. 2022-11

[8]
An analysis of the influence of transfer learning when measuring the tortuosity of blood vessels.

Comput Methods Programs Biomed. 2022-10

[9]
Deep morphology aided diagnosis network for segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black-blood vessel wall MRI.

Med Phys. 2019-10-14

[10]
Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning.

IEEE Trans Med Imaging. 2016-5

引用本文的文献

[1]
Compare three deep learning-based artificial intelligence models for classification of calcified lumbar disc herniation: a multicenter diagnostic study.

Front Surg. 2024-11-6

[2]
nnU-Net-based Segmentation of Tumor Subcompartments in Pediatric Medulloblastoma Using Multiparametric MRI: A Multi-institutional Study.

Radiol Artif Intell. 2024-9

[3]
Radiology and multi-scale data integration for precision oncology.

NPJ Precis Oncol. 2024-7-26

[4]
A survey of the impact of self-supervised pretraining for diagnostic tasks in medical X-ray, CT, MRI, and ultrasound.

BMC Med Imaging. 2024-4-6

[5]
Trustworthy deep learning framework for the detection of abnormalities in X-ray shoulder images.

PLoS One. 2024-3-11

[6]
Improved transfer learning using textural features conflation and dynamically fine-tuned layers.

PeerJ Comput Sci. 2023-9-28

[7]
Study of Alternative Imaging Methods for In Vivo Boron Neutron Capture Therapy.

Cancers (Basel). 2023-7-12

[8]
Deep-Learning-Based Segmentation of Extraocular Muscles from Magnetic Resonance Images.

Bioengineering (Basel). 2023-6-8

[9]
Global Research Trends of Artificial Intelligence on Histopathological Images: A 20-Year Bibliometric Analysis.

Int J Environ Res Public Health. 2022-9-15

[10]
Medical Image Classification Using Transfer Learning and Chaos Game Optimization on the Internet of Medical Things.

Comput Intell Neurosci. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索