Suppr超能文献

用于改进监测以早期发现尼日利亚直接引入木薯褐条病的计算模型。

Computational models for improving surveillance for the early detection of direct introduction of cassava brown streak disease in Nigeria.

机构信息

Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, Washington, United States of America.

Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.

出版信息

PLoS One. 2024 Aug 21;19(8):e0304656. doi: 10.1371/journal.pone.0304656. eCollection 2024.

Abstract

Cassava is a key source of calories for smallholder farmers in sub-Saharan Africa but its role as a food security crop is threatened by the cross-continental spread of cassava brown streak disease (CBSD) that causes high yield losses. In order to mitigate the impact of CBSD, it is important to minimise the delay in first detection of CBSD after introduction to a new country or state so that interventions can be deployed more effectively. Using a computational model that combines simulations of CBSD spread at both the landscape and field scales, we model the effectiveness of different country level survey strategies in Nigeria when CBSD is directly introduced. We find that the main limitation to the rapid CBSD detection in Nigeria, using the current survey strategy, is that an insufficient number of fields are surveyed in newly infected Nigerian states, not the total number of fields surveyed across the country, nor the limitation of only surveying fields near a road. We explored different strategies for geographically selecting fields to survey and found that early and consistent CBSD detection will involve confining candidate survey fields to states where CBSD has not yet been detected and where survey locations are allocated in proportion to the density of cassava crops, detects CBSD sooner, more consistently, and when the epidemic is smaller compared with distributing surveys uniformly across Nigeria.

摘要

木薯是撒哈拉以南非洲小农户的主要卡路里来源,但由于木薯褐色条斑病(CBSD)的跨洲传播,这种作物作为粮食安全作物的作用受到威胁,该病可导致高产量损失。为了减轻 CBSD 的影响,在新的国家或州引入后,尽快发现 CBSD 非常重要,以便更有效地采取干预措施。我们使用一种将 CBSD 传播的景观和田间尺度模拟相结合的计算模型,模拟了当 CBSD 直接引入尼日利亚时,不同国家层面调查策略的效果。我们发现,使用当前的调查策略,尼日利亚快速检测 CBSD 的主要限制因素是,在新感染的尼日利亚州,调查的田间数量不足,而不是全国调查的田间总数,也不是仅在道路附近调查的限制。我们探索了在地理上选择调查田间的不同策略,发现早期和一致的 CBSD 检测将需要将候选调查田间局限于尚未检测到 CBSD 的州,并根据木薯作物的密度按比例分配调查地点,与在尼日利亚各地均匀分配调查相比,这种方法可以更早、更一致地检测到 CBSD,并且在疫情规模较小时进行检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccf1/11338456/7b351abc407a/pone.0304656.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验