Suppr超能文献

评估新冠疫情中病例增长趋势的强度。

Assessing the strength of case growth trends in the coronavirus pandemic.

作者信息

Kriston Levente

机构信息

Department of Medical Psychology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.

出版信息

R Soc Open Sci. 2020 Nov 25;7(11):201622. doi: 10.1098/rsos.201622. eCollection 2020 Nov.

Abstract

The ability to distinguish between erratic and systematic patterns of change in case count data is crucial for assessing and projecting the course of disease outbreaks. Here, it is shown that measuring the strength of trends can provide information that is not readily captured by commonly used descriptive indicators. In combination with the 7-day moving average, Bandt and Pompe's permutation entropy and Wilder's relative strength index were found to support the timely detection of coronavirus epidemic trends and transitions in data from various countries. The results demonstrate that measuring the strength of epidemic growth trends in addition to their magnitude can significantly enhance disease surveillance.

摘要

区分病例数数据中变化的不稳定模式和系统模式的能力对于评估和预测疾病爆发过程至关重要。在此表明,测量趋势强度可以提供常用描述性指标不易捕捉到的信息。结合7天移动平均值,发现班特和庞贝的排列熵以及怀尔德的相对强弱指数有助于及时检测来自各国数据中的新冠病毒流行趋势及转变。结果表明,除了流行增长趋势的幅度外,测量其强度可以显著加强疾病监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98f4/7735351/b7c92b182a2e/rsos201622-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验