Suppr超能文献

气溶胶传播——新型冠状病毒肺炎传播的一条不可或缺的途径:一家百货商店聚集性病例研究

Aerosol transmission, an indispensable route of COVID-19 spread: case study of a department-store cluster.

作者信息

Jiang Guanyu, Wang Can, Song Lu, Wang Xing, Zhou Yangyang, Fei Chunnan, Liu He

机构信息

School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350 China.

Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin, 300350 China.

出版信息

Front Environ Sci Eng. 2021;15(3):46. doi: 10.1007/s11783-021-1386-6. Epub 2020 Dec 25.

Abstract

Patients with COVID-19 have revealed a massive outbreak around the world, leading to widespread concerns in global scope. Figuring out the transmission route of COVID-19 is necessary to control further spread. We analyzed the data of 43 patients in Baodi Department Store (China) to supplement the transmission route and epidemiological characteristics of COVID-19 in a cluster outbreak. Incubation median was estimated to endure 5.95 days (2-13 days). Almost 76.3% of patients sought medical attention immediately uponillness onset. The median period ofillness onsetto hospitalization and confirmation were 3.96 days (0-14) and 5.58 days (1-21), respectively. Patients with different cluster case could demonstrate unique epidemiological characteristics due to the particularity of outbreak sites. SRAS-CoV-2 can be released into the surrounding air through patient's respiratory tract activities, and can exist for a long time for long-distance transportation. SRAS-CoV-2 RNA can be detected in aerosol in different sites, including isolation ward, general ward, outdoor, toilet, hallway, and crowded public area. Environmental factors influencing were analyzed and indicated that the SARS-CoV-2 transportation in aerosol was dependent on temperature, air humidity, ventilation rate and inactivating chemicals (ozone) content. As for the infection route of case numbers 2 to 6, 10, 13, 16, 17, 18, 20 and 23, we believe that aerosol transmission played a significant role in analyzing their exposure history and environmental conditions in Baodi Department Store. Aerosol transmission could occur in some cluster cases when the environmental factors are suitable, and it is an indispensable route of COVID-19 spread.

摘要

新冠肺炎患者已在全球引发大规模疫情,在全球范围内引起广泛关注。弄清楚新冠病毒的传播途径对于控制其进一步传播至关重要。我们分析了中国宝坻百货大楼43例患者的数据,以补充新冠病毒聚集性疫情中的传播途径和流行病学特征。估计潜伏期中位数为5.95天(2 - 13天)。近76.3%的患者在发病后立即就医。发病至住院和确诊的中位时间分别为3.96天(0 - 14天)和5.58天(1 - 21天)。由于疫情爆发地点的特殊性,不同聚集性病例的患者可能表现出独特的流行病学特征。严重急性呼吸综合征冠状病毒2(SRAS-CoV-2)可通过患者的呼吸道活动释放到周围空气中,并能长时间存在以进行远距离传播。在不同场所的气溶胶中均可检测到SRAS-CoV-2 RNA,包括隔离病房、普通病房、室外、厕所、走廊和人员密集的公共区域。分析了影响的环境因素,结果表明气溶胶中的SARS-CoV-2传播取决于温度、空气湿度、通风率和灭活化学物质(臭氧)含量。对于病例2至6、10、13、16、17、18、20和23的感染途径,我们认为气溶胶传播在分析他们在宝坻百货大楼的暴露史和环境条件方面发挥了重要作用。当环境因素适宜时,气溶胶传播可能在一些聚集性病例中发生,并且它是新冠病毒传播不可或缺的途径。

相似文献

1
Aerosol transmission, an indispensable route of COVID-19 spread: case study of a department-store cluster.
Front Environ Sci Eng. 2021;15(3):46. doi: 10.1007/s11783-021-1386-6. Epub 2020 Dec 25.
2
[Investigation and analysis on characteristics of a cluster of COVID-19 associated with exposure in a department store in Tianjin].
Zhonghua Liu Xing Bing Xue Za Zhi. 2020 Apr 10;41(4):489-493. doi: 10.3760/cma.j.cn112338-20200221-00139.
5
Analysis of a super-transmission of SARS-CoV-2 omicron variant BA.5.2 in the outdoor night market.
Front Public Health. 2023 Jul 4;11:1153303. doi: 10.3389/fpubh.2023.1153303. eCollection 2023.
6
The nexus between in-car aerosol concentrations, ventilation and the risk of respiratory infection.
Environ Int. 2021 Dec;157:106814. doi: 10.1016/j.envint.2021.106814. Epub 2021 Aug 16.
8
Airborne Transmission Route of COVID-19: Why 2 Meters/6 Feet of Inter-Personal Distance Could Not Be Enough.
Int J Environ Res Public Health. 2020 Apr 23;17(8):2932. doi: 10.3390/ijerph17082932.
9
COVID-19 Cluster Linked to Aerosol Transmission of SARS-CoV-2 via Floor Drains.
J Infect Dis. 2022 May 4;225(9):1554-1560. doi: 10.1093/infdis/jiab598.
10
Air and environmental sampling for SARS-CoV-2 around hospitalized patients with coronavirus disease 2019 (COVID-19).
Infect Control Hosp Epidemiol. 2020 Nov;41(11):1258-1265. doi: 10.1017/ice.2020.282. Epub 2020 Jun 8.

引用本文的文献

1
An overview of SARS-CoV-2 transmission and engineering strategies to mitigate risk.
J Build Eng. 2023 Aug 15;73:106737. doi: 10.1016/j.jobe.2023.106737. Epub 2023 May 8.
2
Social distancing between personal belongings during the COVID-19 pandemic.
F1000Res. 2025 Feb 5;12:199. doi: 10.12688/f1000research.130662.3. eCollection 2023.
3
Imaging-based optical barcoding for relative humidity sensing based on meta-tip.
Nanophotonics. 2021 Nov 2;11(1):111-118. doi: 10.1515/nanoph-2021-0529. eCollection 2022 Jan.
6
Isolation, microscopic and magnetotactic characterization of Magnetospirillum moscoviense MS-24 from Banjosa Lake, Pakistan.
Biotechnol Lett. 2023 Aug;45(8):967-979. doi: 10.1007/s10529-023-03390-y. Epub 2023 May 25.
7
Evaluating the Impact of the Pandemic Crisis on the Aviation Industry.
Transp Res Rec. 2023 Mar;2677(3):1551-1566. doi: 10.1177/03611981221125741. Epub 2022 Oct 22.
10
Research on the relationship between architectural features in northeast China and vertical aerosol transmission of COVID-19.
Front Public Health. 2023 Jan 12;10:1052610. doi: 10.3389/fpubh.2022.1052610. eCollection 2022.

本文引用的文献

1
Weather, air pollution, and SARS-CoV-2 transmission: a global analysis.
Lancet Planet Health. 2021 Oct;5(10):e671-e680. doi: 10.1016/S2542-5196(21)00202-3.
2
Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care.
Sci Rep. 2020 Jul 29;10(1):12732. doi: 10.1038/s41598-020-69286-3.
3
Infection Risk Assessment of COVID-19 through Aerosol Transmission: a Case Study of South China Seafood Market.
Environ Sci Technol. 2021 Apr 6;55(7):4123-4133. doi: 10.1021/acs.est.0c02895. Epub 2020 Jun 26.
4
Evaluating the massive underreporting and undertesting of COVID-19 cases in multiple global epicenters.
Pulmonology. 2021 Mar-Apr;27(2):110-115. doi: 10.1016/j.pulmoe.2020.05.015. Epub 2020 Jun 6.
5
SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy: First evidence.
Environ Res. 2020 Sep;188:109754. doi: 10.1016/j.envres.2020.109754. Epub 2020 May 30.
6
Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients.
Nat Commun. 2020 May 29;11(1):2800. doi: 10.1038/s41467-020-16670-2.
7
Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment.
Environ Int. 2020 Aug;141:105794. doi: 10.1016/j.envint.2020.105794. Epub 2020 May 11.
8
On airborne transmission and control of SARS-Cov-2.
Sci Total Environ. 2020 Aug 20;731:139178. doi: 10.1016/j.scitotenv.2020.139178. Epub 2020 May 4.
9
Respiratory virus shedding in exhaled breath and efficacy of face masks.
Nat Med. 2020 May;26(5):676-680. doi: 10.1038/s41591-020-0843-2. Epub 2020 Apr 3.
10
Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals.
Nature. 2020 Jun;582(7813):557-560. doi: 10.1038/s41586-020-2271-3. Epub 2020 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验