Office of Air Quality Planning and Standards, Office of Air and Radiation, US Environmental Protection Agency, Research Triangle Park, North Carolina.
Center for Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina.
JAMA Netw Open. 2021 Jan 4;4(1):e2032064. doi: 10.1001/jamanetworkopen.2020.32064.
Future changes in climate are likely to adversely affect human health by affecting concentrations of particulate matter sized less than 2.5 μm (PM2.5) and ozone (O3) in many areas. However, the degree to which these outcomes may be mitigated by reducing air pollutant emissions is not well understood.
To model the associations between future changes in climate, air quality, and human health for 2 climate models and under 2 air pollutant emission scenarios.
DESIGN, SETTING, AND PARTICIPANTS: This modeling study simulated meteorological conditions over the coterminous continental US during a 1995 to 2005 baseline and over the 21st century (2025-2100) by dynamically downscaling representations of a high warming scenario from the Community Earth System Model (CESM) and the Coupled Model version 3 (CM3) global climate models. Using a chemical transport model, PM2.5 and O3 concentrations were simulated under a 2011 air pollutant emission data set and a 2040 projection. The changes in PM2.5 and O3-attributable deaths associated with climate change among the US census-projected population were estimated for 2030, 2050, 2075, and 2095 for each of 2 emission inventories and climate models. Data were analyzed from June 2018 to June 2020.
The main outcomes were simulated change in summer season means of the maximum daily 8-hour mean O3, annual mean PM2.5, population-weighted exposure, and the number of avoided or incurred deaths associated with these pollutants. Results are reported for 2030, 2050, 2075, and 2095, compared with 2000, for 2 climate models and 2 air pollutant emissions data sets.
The projected increased maximum daily temperatures through 2095 were up to 7.6 °C for the CESM model and 11.8 °C for the CM3 model. Under each climate model scenario by 2095, compared with 2000, an estimated additional 21 000 (95% CI, 14 000-28 000) PM2.5-attributable deaths and 4100 (95% CI, 2200-6000) O3-attributable deaths were projected to occur. These projections decreased to an estimated 15 000 (95% CI, 10 000-20 000) PM2.5-attributable deaths and 640 (95% CI, 340-940) O3-attributable deaths when simulated using a future emission inventory that accounted for reduced anthropogenic emissions.
These findings suggest that reducing future air pollutant emissions could also reduce the climate-driven increase in deaths associated with air pollution by hundreds to thousands.
未来气候变化可能通过影响许多地区小于 2.5μm(PM2.5)和臭氧(O3)的颗粒物浓度来对人类健康产生不利影响。然而,通过减少空气污染物排放来减轻这些后果的程度尚不清楚。
为了模拟未来气候变化、空气质量和人类健康之间的关系,我们使用了两种气候模型和两种空气污染物排放情景。
设计、地点和参与者:这项建模研究通过动态下推高变暖情景的代表性,模拟了 1995 年至 2005 年基线期间和 21 世纪(2025-2100 年)期间美国大陆的气象条件。使用化学传输模型,在 2011 年空气污染物排放数据集和 2040 年预测下模拟了 PM2.5 和 O3 浓度。根据 2011 年的空气污染物排放清单和两种气候模型,估计了与气候变化相关的 PM2.5 和 O3 归因死亡人数在 2030 年、2050 年、2075 年和 2095 年在美国人口普查预测人口中的变化。数据分析于 2018 年 6 月至 2020 年 6 月进行。
主要结果是模拟夏季最大日 8 小时平均 O3、年平均 PM2.5、人口加权暴露和与这些污染物相关的避免或发生的死亡人数的变化。报告了两种气候模型和两种空气污染物排放数据集在 2030 年、2050 年、2075 年和 2095 年与 2000 年相比的结果。
到 2095 年,根据每个气候模型情景,预计最高日温度将升高 7.6°C(CESM 模型)和 11.8°C(CM3 模型)。与 2000 年相比,到 2095 年,预计每个情景下额外有 21000 人(95%CI,14000-28000 人)死于 PM2.5 归因,4100 人(95%CI,2200-6000 人)死于 O3 归因。当使用考虑到人为排放减少的未来排放清单进行模拟时,这些预测下降到估计的 15000 人(95%CI,10000-20000 人)死于 PM2.5 归因和 640 人(95%CI,340-940 人)死于 O3 归因。
这些发现表明,减少未来空气污染物排放也可能减少与空气污染相关的气候驱动死亡人数的数百至数千人。