Suppr超能文献

美国东部气候变化相关空气质量对健康的影响,以及建筑物制冷需求适应变化的相关影响:一项跨学科建模研究。

Air-quality-related health impacts from climate change and from adaptation of cooling demand for buildings in the eastern United States: An interdisciplinary modeling study.

机构信息

Center for Sustainability and the Global Environment (SAGE), Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

出版信息

PLoS Med. 2018 Jul 3;15(7):e1002599. doi: 10.1371/journal.pmed.1002599. eCollection 2018 Jul.

Abstract

BACKGROUND

Climate change negatively impacts human health through heat stress and exposure to worsened air pollution, amongst other pathways. Indoor use of air conditioning can be an effective strategy to reduce heat exposure. However, increased air conditioning use increases emissions of air pollutants from power plants, in turn worsening air quality and human health impacts. We used an interdisciplinary linked model system to quantify the impacts of heat-driven adaptation through building cooling demand on air-quality-related health outcomes in a representative mid-century climate scenario.

METHODS AND FINDINGS

We used a modeling system that included downscaling historical and future climate data with the Weather Research and Forecasting (WRF) model, simulating building electricity demand using the Regional Building Energy Simulation System (RBESS), simulating power sector production and emissions using MyPower, simulating ambient air quality using the Community Multiscale Air Quality (CMAQ) model, and calculating the incidence of adverse health outcomes using the Environmental Benefits Mapping and Analysis Program (BenMAP). We performed simulations for a representative present-day climate scenario and 2 representative mid-century climate scenarios, with and without exacerbated power sector emissions from adaptation in building energy use. We find that by mid-century, climate change alone can increase fine particulate matter (PM2.5) concentrations by 58.6% (2.50 μg/m3) and ozone (O3) by 14.9% (8.06 parts per billion by volume [ppbv]) for the month of July. A larger change is found when comparing the present day to the combined impact of climate change and increased building energy use, where PM2.5 increases 61.1% (2.60 μg/m3) and O3 increases 15.9% (8.64 ppbv). Therefore, 3.8% of the total increase in PM2.5 and 6.7% of the total increase in O3 is attributable to adaptive behavior (extra air conditioning use). Health impacts assessment finds that for a mid-century climate change scenario (with adaptation), annual PM2.5-related adult mortality increases by 13,547 deaths (14 concentration-response functions with mean incidence range of 1,320 to 26,481, approximately US$126 billion cost) and annual O3-related adult mortality increases by 3,514 deaths (3 functions with mean incidence range of 2,175 to 4,920, approximately US$32.5 billion cost), calculated as a 3-month summer estimate based on July modeling. Air conditioning adaptation accounts for 654 (range of 87 to 1,245) of the PM2.5-related deaths (approximately US$6 billion cost, a 4.8% increase above climate change impacts alone) and 315 (range of 198 to 438) of the O3-related deaths (approximately US$3 billion cost, an 8.7% increase above climate change impacts alone). Limitations of this study include modeling only a single month, based on 1 model-year of future climate simulations. As a result, we do not project the future, but rather describe the potential damages from interactions arising between climate, energy use, and air quality.

CONCLUSIONS

This study examines the contribution of future air-pollution-related health damages that are caused by the power sector through heat-driven air conditioning adaptation in buildings. Results show that without intervention, approximately 5%-9% of exacerbated air-pollution-related mortality will be due to increases in power sector emissions from heat-driven building electricity demand. This analysis highlights the need for cleaner energy sources, energy efficiency, and energy conservation to meet our growing dependence on building cooling systems and simultaneously mitigate climate change.

摘要

背景

气候变化通过热应激和加剧的空气污染等途径对人类健康产生负面影响。室内使用空调是减少热暴露的有效策略。然而,空调使用的增加会增加来自发电厂的空气污染物排放,从而恶化空气质量和人类健康影响。我们使用跨学科的链接模型系统,在一个具有代表性的本世纪中期气候情景中,量化了通过建筑冷却需求驱动的适应对与空气质量相关的健康结果的影响。

方法和发现

我们使用了一个建模系统,该系统包括使用天气研究和预报(WRF)模型对历史和未来气候数据进行降尺度,使用区域建筑能源模拟系统(RBESS)模拟建筑电力需求,使用 MyPower 模拟电力部门的生产和排放,使用社区多尺度空气质量(CMAQ)模型模拟环境空气质量,并使用环境效益映射和分析程序(BenMAP)计算不良健康结果的发生率。我们为一个具有代表性的当今气候情景和两个具有代表性的本世纪中期气候情景进行了模拟,其中包括建筑能源使用中适应加剧的电力部门排放。我们发现,到本世纪中期,仅气候变化就可以使 7 月的细颗粒物(PM2.5)浓度增加 58.6%(2.50μg/m3),臭氧(O3)增加 14.9%(8.06 体积单位的部分每十亿[ppbv])。当将当今情况与气候变化和建筑能源使用增加的综合影响进行比较时,会发现更大的变化,其中 PM2.5 增加 61.1%(2.60μg/m3),O3 增加 15.9%(8.64 ppbv)。因此,PM2.5 总增加量的 3.8%和 O3 总增加量的 6.7%归因于适应性行为(额外的空调使用)。健康影响评估发现,对于本世纪中期的气候变化情景(有适应),每年与 PM2.5 相关的成人死亡率增加了 13,547 人(14 个浓度反应函数,平均发病率范围为 1,320 至 26,481,约 1260 亿美元的成本),每年与 O3 相关的成人死亡率增加了 3,514 人(3 个函数,平均发病率范围为 2,175 至 4,920,约 325 亿美元的成本),这是基于 7 月建模的 3 个月夏季估计数。空调适应占与 PM2.5 相关的死亡人数的 654 人(范围为 87 至 1245)(约 60 亿美元的成本,比气候变化影响 alone 增加了 4.8%)和与 O3 相关的死亡人数的 315 人(范围为 198 至 438)(约 30 亿美元的成本,比气候变化影响 alone 增加了 8.7%)。本研究的局限性包括仅模拟一个月,基于未来气候模拟的一个模型年。因此,我们不预测未来,而是描述气候、能源使用和空气质量之间相互作用可能造成的潜在损害。

结论

本研究考察了由于建筑物中由热驱动的空调适应引起的电力部门与未来空气污染物相关的健康损害的贡献。结果表明,如果不进行干预,大约 5%-9%的加剧的与空气污染物相关的死亡率将归因于来自热驱动的建筑电力需求的电力部门排放的增加。这项分析强调了需要清洁的能源、提高能源效率和节约能源,以满足我们对建筑冷却系统日益增长的依赖,同时减轻气候变化的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bbf/6029751/c2237fc789bf/pmed.1002599.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验