Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy.
Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy.
Radiol Med. 2021 May;126(5):688-697. doi: 10.1007/s11547-020-01314-8. Epub 2021 Jan 4.
Prostate cancer represents the most common cancer afflicting men. It may be asymptomatic at the early stage. In this paper, we propose a methodology aimed to detect the prostate cancer grade by computing non-invasive shape-based radiomic features directly from magnetic resonance images.
We use a freely available dataset composed by coronal magnetic resonance images belonging to 112 patients. We represent magnetic resonance slices in terms of formal model, and we exploit model checking to check whether a set of properties (formulated with the support of pathologists and radiologists) is verified on the formal model. Each property is related to a different cancer grade with the aim to cover all the cancer grade groups.
An average specificity equal to 0.97 and an average sensitivity equal to 1 have been obtained with our methodology.
The experimental analysis demonstrates the effectiveness of radiomics and formal verification for Gleason grade group detection from magnetic resonance.
前列腺癌是男性最常见的癌症。在早期可能没有症状。在本文中,我们提出了一种方法,旨在通过直接从磁共振图像计算非侵入性基于形状的放射组学特征来检测前列腺癌的分级。
我们使用了一个免费提供的数据集,其中包含 112 名患者的冠状面磁共振图像。我们用形式模型来表示磁共振切片,并利用模型检查来检查一组属性(在病理学家和放射科医生的支持下制定)是否在形式模型上得到验证。每个属性都与不同的癌症分级相关,旨在涵盖所有的癌症分级组。
我们的方法获得了平均特异性等于 0.97 和平均灵敏度等于 1 的结果。
实验分析证明了放射组学和形式验证在从磁共振检测格里森分级组中的有效性。