Suppr超能文献

使用放射组学生物标志物进行前列腺癌Gleason评分和治疗预测的形式化方法。

Formal methods for prostate cancer Gleason score and treatment prediction using radiomic biomarkers.

作者信息

Brunese Luca, Mercaldo Francesco, Reginelli Alfonso, Santone Antonella

机构信息

Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy.

Institute for Informatics and Telematics, National Research Council of Italy (CNR), Pisa, Italy; Department of Bioscience and Territory, University of Molise, Pesche (IS), Italy.

出版信息

Magn Reson Imaging. 2020 Feb;66:165-175. doi: 10.1016/j.mri.2019.08.030. Epub 2019 Aug 30.

Abstract

Prostate cancer is a significant public health burden and a major cause of morbidity and mortality among men worldwide. Only in 2018 were reported 1.3 million of new diagnosed patients. Usually an invasive trans-perineal biopsy is the way to diagnose prostate cancer grade by prostate tissue removal. In this paper we propose a non invasive method to detect the prostate cancer grade (the so-called Gleason score) by computing radiomic biomarkers from magnetic resonance images. Furthermore, the proposed method predicts whether the cancer is suitable for the surgery treatment basing on the pathologist and surgeon suggestions. We represent patient magnetic resonances in terms of formal models and, through an algorithm designed by authors, we infer a set of properties aimed to predict the Gleason score and the treatment. By exploiting a formal verification environment, the properties are verified on two different real-world data-sets, the first one is composed of 36 patients, while the second one of 26, confirming the effectiveness of the proposed method.

摘要

前列腺癌是一个重大的公共卫生负担,也是全球男性发病和死亡的主要原因。仅在2018年,就报告了130万新诊断患者。通常,侵入性经会阴活检是通过切除前列腺组织来诊断前列腺癌分级的方法。在本文中,我们提出了一种非侵入性方法,通过从磁共振图像中计算放射组学生物标志物来检测前列腺癌分级(即所谓的 Gleason 评分)。此外,该方法根据病理学家和外科医生的建议预测癌症是否适合手术治疗。我们用形式模型来表示患者的磁共振图像,并通过作者设计的算法,推断出一组旨在预测 Gleason 评分和治疗情况的属性。通过利用形式验证环境,在两个不同的真实数据集上验证了这些属性,第一个数据集由36名患者组成,第二个由26名患者组成,证实了所提方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验