Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
Int J Mol Sci. 2020 Dec 31;22(1):363. doi: 10.3390/ijms22010363.
The effects of airway inflammation on airway smooth muscle (ASM) are mediated by pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα). In this review article, we will provide a unifying hypothesis for a homeostatic response to airway inflammation that mitigates oxidative stress and thereby provides resilience to ASM. Previous studies have shown that acute exposure to TNFα increases ASM force generation in response to muscarinic stimulation (hyper-reactivity) resulting in increased ATP consumption and increased tension cost. To meet this increased energetic demand, mitochondrial O consumption and oxidative phosphorylation increases but at the cost of increased reactive oxygen species (ROS) production (oxidative stress). TNFα-induced oxidative stress results in the accumulation of unfolded proteins in the endoplasmic reticulum (ER) and mitochondria of ASM. In the ER, TNFα selectively phosphorylates inositol-requiring enzyme 1 alpha (pIRE1α) triggering downstream splicing of the transcription factor X-box binding protein 1 (XBP1s); thus, activating the pIRE1α/XBP1s ER stress pathway. Protein unfolding in mitochondria also triggers an unfolded protein response (UPR). In our conceptual framework, we hypothesize that activation of these pathways is homeostatically directed towards mitochondrial remodeling via an increase in peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α) expression, which in turn triggers: (1) mitochondrial fragmentation (increased dynamin-related protein-1 (Drp1) and reduced mitofusin-2 (Mfn2) expression) and mitophagy (activation of the Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)/Parkin mitophagy pathway) to improve mitochondrial quality; (2) reduced Mfn2 also results in a disruption of mitochondrial tethering to the ER and reduced mitochondrial Ca influx; and (3) mitochondrial biogenesis and increased mitochondrial volume density. The homeostatic remodeling of mitochondria results in more efficient O consumption and oxidative phosphorylation and reduced ROS formation by individual mitochondrion, while still meeting the increased ATP demand. Thus, the energetic load of hyper-reactivity is shared across the mitochondrial pool within ASM cells.
气道炎症对气道平滑肌 (ASM) 的影响是由促炎细胞因子如肿瘤坏死因子-α (TNFα) 介导的。在这篇综述文章中,我们将提出一个统一的假说,即气道炎症的稳态反应减轻氧化应激,从而为 ASM 提供弹性。先前的研究表明,急性暴露于 TNFα 会增加 ASM 对毒蕈碱刺激的力产生反应 (高反应性),导致 ATP 消耗增加和张力成本增加。为了满足这种增加的能量需求,线粒体 O 消耗和氧化磷酸化增加,但代价是增加活性氧物种 (ROS) 的产生 (氧化应激)。TNFα 诱导的氧化应激导致 ASM 内质网 (ER) 和线粒体中未折叠蛋白的积累。在内质网中,TNFα 选择性地磷酸化肌醇需求酶 1α (pIRE1α),触发转录因子 X 盒结合蛋白 1 (XBP1s) 的下游剪接;从而激活 pIRE1α/XBP1s ER 应激途径。线粒体中蛋白质的展开也会触发未折叠蛋白反应 (UPR)。在我们的概念框架中,我们假设这些途径的激活是通过增加过氧化物酶体增殖物激活受体-γ共激活因子 1α (PGC1α) 的表达,从而导致线粒体重塑的稳态导向,这反过来又触发:(1) 线粒体碎片化 (增加动力相关蛋白-1 (Drp1) 和减少线粒体融合蛋白-2 (Mfn2) 表达) 和线粒体自噬 (磷酸酶和张力蛋白同源物 (PTEN) 诱导的假定激酶 1 (PINK1)/Parkin 线粒体自噬途径的激活) 以改善线粒体质量;(2) 减少 Mfn2 也会导致线粒体与 ER 的连接中断和减少线粒体 Ca 内流;(3) 线粒体生物发生和增加线粒体体积密度。线粒体的稳态重塑导致每个线粒体更有效的 O 消耗和氧化磷酸化,以及减少 ROS 的形成,同时仍满足增加的 ATP 需求。因此,高反应性的能量负荷由 ASM 细胞内的线粒体池共同分担。