Chemistry Research Unit, United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA.
Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA.
Metabolomics. 2021 Jan 5;17(1):6. doi: 10.1007/s11306-020-01739-2.
Studies investigating crop resistance to abiotic and biotic stress have largely focused on plant responses to singular forms of stress and individual biochemical pathways that only partially represent stress responses. Thus, combined abiotic and biotic stress treatments and the global assessment of their elicited metabolic expression remains largely unexplored. In this study, we employed targeted and untargeted metabolomics to investigate the molecular responses of maize (Zea mays) to abiotic, biotic, and combinatorial stress.
We compared the inducible metabolomes of heat-stressed (abiotic) and C. heterostrophus-infected (biotic) maize and examined the effects of heat stress on the ability of maize to defend itself against C. heterostrophus.
Ultra-high-performance liquid chromatography-high-resolution mass spectrometry was performed on plants grown under control conditions (28 °C), heat stress (38 °C), Cochliobolus heterostrophus infection, or combinatorial stress [heat (38 °C) + C. heterostrophus infection].
Multivariate analyses revealed differential metabolite expression between heat stress, C. heterostrophus infection, and their respective controls. In combinatorial experiments, treatment with heat stress prior to fungal inoculation negatively impacted maize disease resistance against C. heterostrophus, and distinct metabolome separation between combinatorial stressed plants and the non-heat-stressed infected controls was observed. Targeted analysis revealed inducible primary and secondary metabolite responses to abiotic/biotic stress, and combinatorial experiments indicated that deficiency in the hydroxycinnamic acid, p-coumaric acid, may contribute to the heat-induced susceptibility of maize to C. heterostrophus.
These findings demonstrate that abiotic stress can predispose crops to more severe disease symptoms, underlining the increasing need to investigate defense chemistry in plants under combinatorial stress.
研究作物对非生物和生物胁迫的抗性主要集中在植物对单一形式胁迫和仅部分代表胁迫反应的单个生化途径的反应上。因此,组合非生物和生物胁迫处理及其诱发代谢表达的全面评估在很大程度上仍未得到探索。在这项研究中,我们采用靶向和非靶向代谢组学来研究玉米(Zea mays)对非生物、生物和组合胁迫的分子反应。
我们比较了受热胁迫(非生物)和 C. heterostrophus 感染(生物)的玉米的诱导代谢组,并研究了热胁迫对玉米抵御 C. heterostrophus 的能力的影响。
在对照条件(28°C)、热胁迫(38°C)、 Cochliobolus heterostrophus 感染或组合胁迫[热(38°C)+ Cochliobolus heterostrophus 感染]下生长的植物上进行超高效液相色谱-高分辨率质谱分析。
多元分析显示热胁迫、C. heterostrophus 感染及其各自对照之间存在差异代谢物表达。在组合实验中,在真菌接种前进行热胁迫处理对玉米对 C. heterostrophus 的抗病性产生负面影响,并且在组合胁迫植物和非热胁迫感染对照之间观察到明显的代谢组分离。靶向分析显示了对非生物/生物胁迫的诱导初级和次级代谢物反应,组合实验表明,羟基肉桂酸、对香豆酸的缺乏可能导致玉米对 C. heterostrophus 的热诱导易感性。
这些发现表明,非生物胁迫会使作物更容易出现更严重的疾病症状,这突显出在组合胁迫下研究植物防御化学的必要性日益增加。