Suppr超能文献

钴和铁四吡咯啉基 CO 还原催化剂的作用机制研究:金属-配体轨道相互作用是决定不同反应途径的关键驱动力。

Mechanistic Insights into Co and Fe Quaterpyridine-Based CO Reduction Catalysts: Metal-Ligand Orbital Interaction as the Key Driving Force for Distinct Pathways.

机构信息

Department of Chemistry, University of California, Berkeley, California 94720, United States.

Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States.

出版信息

J Am Chem Soc. 2021 Jan 20;143(2):744-763. doi: 10.1021/jacs.0c09380. Epub 2021 Jan 5.

Abstract

Both [Co(qpy)(HO)] and [Fe(qpy)(HO)] (with qpy = 2,2':6',2″:6'',2‴-quaterpyridine) are efficient homogeneous electrocatalysts and photoelectrocatalysts for the reduction of CO to CO. The Co catalyst is more efficient in the electrochemical reduction, while the Fe catalyst is an excellent photoelectrocatalyst ( 2018, 8, 3411-3417). This work uses density functional theory to shed light on the contrasting catalytic pathways. While both catalysts experience primarily ligand-based reductions, the second reduction in the Co catalyst is delocalized onto the metal via a metal-ligand bonding interaction, causing a spin transition and a distorted ligand framework. This orbital interaction explains the experimentally observed mild reduction potential and slow kinetics of the second reduction. The decreased hardness and doubly occupied d-orbital facilitate a σ-bond with the CO-π* in an η- binding mode. CO binding is only possible after two reductions resulting in an EEC mechanism (E = electron transfer, C = chemical reaction), and the second protonation is rate-limiting. In contrast, the Fe catalyst maintains a Lewis acidic metal center throughout the reduction process because the metal orbitals do not strongly mix with the qpy-π* orbitals. This allows binding of the activated CO in an η-binding mode. This interaction stabilizes the activated CO via a π-type interaction of a Fe-t orbital and the CO-π* and a dative bond of the oxygen lone pair. This facilitates CO binding to a singly reduced catalyst resulting in an ECE mechanism. The barrier for CO addition and the second protonation are higher than those for the Co catalyst and rate-limiting.

摘要

[Co(qpy)(HO)] 和 [Fe(qpy)(HO)](其中 qpy = 2,2':6',2″:6'',2‴- 四吡啶)都是将 CO 还原为 CO 的高效均相电催化剂和光电催化剂。钴催化剂在电化学还原中更有效,而铁催化剂是一种优秀的光电催化剂(2018 年,8,3411-3417)。这项工作使用密度泛函理论来阐明对比催化途径。虽然两种催化剂都主要经历配体还原,但钴催化剂中的第二个还原通过金属-配体键合相互作用离域到金属上,导致自旋跃迁和配体框架扭曲。这种轨道相互作用解释了实验观察到的温和还原电位和第二个还原的缓慢动力学。硬度降低和双占据的 d 轨道有利于与 CO-π* 形成 η-键合模式的σ键。只有在两次还原后才能发生 CO 结合,从而导致 EEC 机制(E = 电子转移,C = 化学反应),第二个质子化是限速步骤。相比之下,铁催化剂在整个还原过程中保持路易斯酸性金属中心,因为金属轨道与 qpy-π* 轨道没有强烈混合。这允许在 η-键合模式下结合活化的 CO。这种相互作用通过 Fe-t 轨道与 CO-π* 的π型相互作用和氧孤对的配位键稳定活化的 CO。这促进了单还原催化剂与 CO 的结合,从而导致 ECE 机制。CO 加成和第二个质子化的势垒高于钴催化剂,是限速步骤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验