Suppr超能文献

帕金森病的多模态表型轴

Multimodal phenotypic axes of Parkinson's disease.

作者信息

Markello Ross D, Shafiei Golia, Tremblay Christina, Postuma Ronald B, Dagher Alain, Misic Bratislav

机构信息

McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada.

出版信息

NPJ Parkinsons Dis. 2021 Jan 5;7(1):6. doi: 10.1038/s41531-020-00144-9.

Abstract

Individuals with Parkinson's disease present with a complex clinical phenotype, encompassing sleep, motor, cognitive, and affective disturbances. However, characterizations of PD are typically made for the "average" patient, ignoring patient heterogeneity and obscuring important individual differences. Modern large-scale data sharing efforts provide a unique opportunity to precisely investigate individual patient characteristics, but there exists no analytic framework for comprehensively integrating data modalities. Here we apply an unsupervised learning method-similarity network fusion-to objectively integrate MRI morphometry, dopamine active transporter binding, protein assays, and clinical measurements from n = 186 individuals with de novo Parkinson's disease from the Parkinson's Progression Markers Initiative. We show that multimodal fusion captures inter-dependencies among data modalities that would otherwise be overlooked by field standard techniques like data concatenation. We then examine how patient subgroups derived from the fused data map onto clinical phenotypes, and how neuroimaging data is critical to this delineation. Finally, we identify a compact set of phenotypic axes that span the patient population, demonstrating that this continuous, low-dimensional projection of individual patients presents a more parsimonious representation of heterogeneity in the sample compared to discrete biotypes. Altogether, these findings showcase the potential of similarity network fusion for combining multimodal data in heterogeneous patient populations.

摘要

帕金森病患者表现出复杂的临床表型,包括睡眠、运动、认知和情感障碍。然而,帕金森病的特征描述通常是针对“平均”患者做出的,忽略了患者的异质性,掩盖了重要的个体差异。现代大规模数据共享工作提供了一个独特的机会来精确研究个体患者特征,但目前尚无用于全面整合数据模式的分析框架。在此,我们应用一种无监督学习方法——相似性网络融合——来客观整合来自帕金森病进展标记物倡议项目中n = 186例新发帕金森病患者的MRI形态学、多巴胺活性转运体结合、蛋白质检测和临床测量数据。我们表明,多模态融合捕捉到了数据模式之间的相互依赖关系,而这些关系在诸如数据拼接等领域标准技术中会被忽略。然后,我们研究从融合数据中得出的患者亚组如何映射到临床表型上,以及神经影像数据对这种划分的关键作用。最后,我们确定了一组紧凑的表型轴,这些轴涵盖了患者群体,表明与离散生物类型相比,这种对个体患者的连续、低维投影更简洁地呈现了样本中的异质性。总之,这些发现展示了相似性网络融合在异质患者群体中整合多模态数据的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff89/7785730/c138e70cd2a6/41531_2020_144_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验