Jacobs Grace R, Voineskos Aristotle N, Hawco Colin, Stefanik Laura, Forde Natalie J, Dickie Erin W, Lai Meng-Chuan, Szatmari Peter, Schachar Russell, Crosbie Jennifer, Arnold Paul D, Goldenberg Anna, Erdman Lauren, Ameis Stephanie H
Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
Kimel Family Translational Imaging Genetics Research Laboratory, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.
Neuropsychopharmacology. 2021 Feb;46(3):643-653. doi: 10.1038/s41386-020-00902-6. Epub 2020 Nov 9.
Autism spectrum disorder (ASD), obsessive-compulsive disorder (OCD) and attention-deficit/hyperactivity disorder (ADHD) are clinically and biologically heterogeneous neurodevelopmental disorders (NDDs). The objective of the present study was to integrate brain imaging and behavioral measures to identify new brain-behavior subgroups cutting across these disorders. A subset of the data from the Province of Ontario Neurodevelopmental Disorder (POND) Network was used including participants with different NDDs (aged 6-16 years) that underwent cross-sectional T1-weighted and diffusion-weighted magnetic resonance imaging (MRI) scanning on the same 3T scanner, and behavioral/cognitive assessments. Similarity Network Fusion was applied to integrate cortical thickness, subcortical volume, white matter fractional anisotropy (FA), and behavioral measures in 176 children with ASD, ADHD or OCD with complete data that passed quality control. Normalized mutual information was used to determine top contributing model features. Bootstrapping, out-of-model outcome measures and supervised machine learning were each used to examine stability and evaluate the new groups. Cortical thickness in socio-emotional and attention/executive networks and inattention symptoms comprised the top ten features driving participant similarity and differences between four transdiagnostic groups. Subcortical volumes (pallidum, nucleus accumbens, thalamus) were also different among groups, although white matter FA showed limited differences. Features driving participant similarity remained stable across resampling, and the new groups showed significantly different scores on everyday adaptive functioning. Our findings open the possibility of studying new data-driven groups that represent children with NDDs more similar to each other than others within their own diagnostic group. Future work is needed to build on this early attempt through replication of the current findings in independent samples and testing longitudinally for prognostic value.
自闭症谱系障碍(ASD)、强迫症(OCD)和注意力缺陷多动障碍(ADHD)是临床和生物学上具有异质性的神经发育障碍(NDDs)。本研究的目的是整合脑成像和行为测量方法,以识别跨越这些障碍的新的脑-行为亚组。我们使用了安大略省神经发育障碍(POND)网络的一部分数据,包括患有不同神经发育障碍的参与者(年龄在6至16岁之间),他们在同一台3T扫描仪上接受了横断面T1加权和扩散加权磁共振成像(MRI)扫描以及行为/认知评估。相似性网络融合被应用于整合176名患有ASD、ADHD或OCD且数据完整并通过质量控制的儿童的皮质厚度、皮质下体积、白质分数各向异性(FA)和行为测量数据。归一化互信息用于确定对模型贡献最大的特征。分别使用自助法、模型外结果测量和监督机器学习来检验稳定性并评估新分组。社会情感和注意力/执行网络中的皮质厚度以及注意力不集中症状是驱动四个跨诊断组参与者相似性和差异的十大特征。尽管白质FA显示出有限的差异,但皮质下体积(苍白球、伏隔核、丘脑)在各组之间也存在差异。驱动参与者相似性的特征在重采样过程中保持稳定,并且新分组在日常适应功能方面表现出显著不同的分数。我们的研究结果开启了研究新的数据驱动分组的可能性,这些分组所代表的患有神经发育障碍的儿童彼此之间比其各自诊断组内的其他儿童更为相似。未来需要开展工作,通过在独立样本中复制当前研究结果并进行纵向测试以评估预后价值,在此早期尝试的基础上进一步推进。