Suppr超能文献

通过深度强化学习在合成可达化学空间中的分子设计

Molecular Design in Synthetically Accessible Chemical Space via Deep Reinforcement Learning.

作者信息

Horwood Julien, Noutahi Emmanuel

机构信息

InVivo AI, Montreal, Quebec H2S 3H1, Canada.

Mila, Université de Montréal, Montreal, Quebec H2S 3H1, Canada.

出版信息

ACS Omega. 2020 Dec 15;5(51):32984-32994. doi: 10.1021/acsomega.0c04153. eCollection 2020 Dec 29.

Abstract

The fundamental goal of generative drug design is to propose optimized molecules that meet predefined activity, selectivity, and pharmacokinetic criteria. Despite recent progress, we argue that existing generative methods are limited in their ability to favorably shift the distributions of molecular properties during optimization. We instead propose a novel Reinforcement Learning framework for molecular design in which an agent learns to directly optimize through a space of synthetically accessible drug-like molecules. This becomes possible by defining transitions in our Markov decision process as chemical reactions and allows us to leverage synthetic routes as an inductive bias. We validate our method by demonstrating that it outperforms existing state-of-the-art approaches in the optimization of pharmacologically relevant objectives, while results on multi-objective optimization tasks suggest increased scalability to realistic pharmaceutical design problems.

摘要

生成式药物设计的基本目标是提出符合预定义活性、选择性和药代动力学标准的优化分子。尽管最近取得了进展,但我们认为现有的生成方法在优化过程中有利地改变分子性质分布的能力有限。相反,我们提出了一种用于分子设计的新型强化学习框架,其中智能体学习通过合成可及的类药物分子空间直接进行优化。通过将马尔可夫决策过程中的转换定义为化学反应,这成为可能,并使我们能够利用合成路线作为归纳偏差。我们通过证明它在优化药理学相关目标方面优于现有的最先进方法来验证我们的方法,而多目标优化任务的结果表明它在实际药物设计问题上具有更高的可扩展性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d15/7774092/b293d136aefa/ao0c04153_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验