Delgado-Callico Laia, Rossi Kevin, Pinto-Miles Raphael, Salzbrenner Pascal, Baletto Francesca
Department of Physics, King's College London, Strand, London WC2R 2LS, UK.
Nanoscale. 2021 Jan 14;13(2):1172-1180. doi: 10.1039/d0nr06850k. Epub 2021 Jan 6.
Predicting when phase changes occur in nanoparticles is fundamental for designing the next generation of devices suitable for catalysis, biomedicine, optics, chemical sensing and electronic circuits. The estimate of the temperature at which metallic nanoparticles become liquid is, however, a challenge and a standard definition is still missing. We discover a universal feature in the distribution of the atomic-pair distances that distinguishes the melting transition of monometallic nanoparticles. We analyse the solid-liquid change of several late-transition metals nanoparticles, i.e. Ni, Cu, Pd, Ag, Au and Pt, through classical molecular dynamics. We consider various initial shapes from 146 to 976 atoms, corresponding to the 1.5-4.1 nm size range, placing the nanoparticles in either a vacuum or embedded in a homogeneous environment, simulated by an implicit force-field. Regardless of the material, its initial shape, size and environment, the second peak in the pair-distance distribution function, expected at the bulk lattice distance, disappears when the nanoparticle melts. As the pair-distance distribution is a measurable quantity, the proposed criterion holds for both numerical and experimental investigations. For a more straightforward calculus of the melting temperature, we demonstrate that the cross-entropy between a reference solid pair-distance distribution function and the one of nanoparticles at increasing temperatures present a quasi-first order transition at the phase-change temperature.
预测纳米颗粒何时发生相变对于设计适用于催化、生物医学、光学、化学传感和电子电路的下一代设备至关重要。然而,估计金属纳米颗粒变为液态的温度是一项挑战,目前仍缺乏标准定义。我们在原子对距离分布中发现了一个通用特征,该特征可区分单金属纳米颗粒的熔化转变。我们通过经典分子动力学分析了几种晚期过渡金属纳米颗粒(即镍、铜、钯、银、金和铂)的固液相变。我们考虑了由146至976个原子组成的各种初始形状,对应于1.5 - 4.1纳米的尺寸范围,将纳米颗粒置于真空中或嵌入由隐式力场模拟的均匀环境中。无论材料、其初始形状、尺寸和环境如何,当纳米颗粒熔化时,预期在体晶格距离处出现的对距离分布函数中的第二个峰消失。由于对距离分布是一个可测量的量,所提出的标准适用于数值研究和实验研究。为了更直接地计算熔化温度,我们证明,在升温过程中,参考固体对距离分布函数与纳米颗粒的对距离分布函数之间的交叉熵在相变温度处呈现准一级转变。