Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI, 48109, USA.
Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI, 48109, USA.
Cell Tissue Res. 2021 Jan;383(1):91-112. doi: 10.1007/s00441-020-03386-4. Epub 2021 Jan 6.
Appropriate perception and representation of sensory stimuli pose an everyday challenge to the brain. In order to represent the wide and unpredictable array of environmental stimuli, principle neurons of associative learning regions receive sparse, combinatorial sensory inputs. Despite the broad role of such networks in sensory neural circuits, the developmental mechanisms underlying their emergence are not well understood. As mammalian sensory coding regions are numerically complex and lack the accessibility of simpler invertebrate systems, we chose to focus this review on the numerically simpler, yet functionally similar, Drosophila mushroom body calyx. We bring together current knowledge about the cellular and molecular mechanisms orchestrating calyx development, in addition to drawing insights from literature regarding construction of sparse wiring in the mammalian cerebellum. From this, we formulate hypotheses to guide our future understanding of the development of this critical perceptual center.
适当感知和表示感觉刺激对大脑来说是一项日常挑战。为了表示广泛且不可预测的环境刺激,联想学习区域的主要神经元会接收稀疏的组合感觉输入。尽管这些网络在感觉神经回路中具有广泛的作用,但它们出现的发育机制尚不清楚。由于哺乳动物感觉编码区域数量复杂,且缺乏简单无脊椎动物系统的可及性,我们选择将重点放在数量更简单但功能相似的果蝇蘑菇体蕈形体上。我们汇集了关于协调蕈形体发育的细胞和分子机制的现有知识,此外还借鉴了关于哺乳动物小脑稀疏布线构建的文献中的见解。由此,我们提出了假设,以指导我们对这个关键感知中心发育的未来理解。