Suppr超能文献

理清头绪:蘑菇体冠部稀疏分布连接的发展。

Untangling the wires: development of sparse, distributed connectivity in the mushroom body calyx.

机构信息

Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI, 48109, USA.

Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI, 48109, USA.

出版信息

Cell Tissue Res. 2021 Jan;383(1):91-112. doi: 10.1007/s00441-020-03386-4. Epub 2021 Jan 6.

Abstract

Appropriate perception and representation of sensory stimuli pose an everyday challenge to the brain. In order to represent the wide and unpredictable array of environmental stimuli, principle neurons of associative learning regions receive sparse, combinatorial sensory inputs. Despite the broad role of such networks in sensory neural circuits, the developmental mechanisms underlying their emergence are not well understood. As mammalian sensory coding regions are numerically complex and lack the accessibility of simpler invertebrate systems, we chose to focus this review on the numerically simpler, yet functionally similar, Drosophila mushroom body calyx. We bring together current knowledge about the cellular and molecular mechanisms orchestrating calyx development, in addition to drawing insights from literature regarding construction of sparse wiring in the mammalian cerebellum. From this, we formulate hypotheses to guide our future understanding of the development of this critical perceptual center.

摘要

适当感知和表示感觉刺激对大脑来说是一项日常挑战。为了表示广泛且不可预测的环境刺激,联想学习区域的主要神经元会接收稀疏的组合感觉输入。尽管这些网络在感觉神经回路中具有广泛的作用,但它们出现的发育机制尚不清楚。由于哺乳动物感觉编码区域数量复杂,且缺乏简单无脊椎动物系统的可及性,我们选择将重点放在数量更简单但功能相似的果蝇蘑菇体蕈形体上。我们汇集了关于协调蕈形体发育的细胞和分子机制的现有知识,此外还借鉴了关于哺乳动物小脑稀疏布线构建的文献中的见解。由此,我们提出了假设,以指导我们对这个关键感知中心发育的未来理解。

相似文献

1
Untangling the wires: development of sparse, distributed connectivity in the mushroom body calyx.
Cell Tissue Res. 2021 Jan;383(1):91-112. doi: 10.1007/s00441-020-03386-4. Epub 2021 Jan 6.
2
Stereotypic and random patterns of connectivity in the larval mushroom body calyx of Drosophila.
Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19027-32. doi: 10.1073/pnas.0509643102. Epub 2005 Dec 15.
3
Localized olfactory representation in mushroom bodies of Drosophila larvae.
Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10314-9. doi: 10.1073/pnas.0900178106. Epub 2009 Jun 5.
4
The insect mushroom body, an experience-dependent recoding device.
J Physiol Paris. 2014 Apr-Jun;108(2-3):84-95. doi: 10.1016/j.jphysparis.2014.07.004. Epub 2014 Aug 1.
5
Visual Input into the Drosophila melanogaster Mushroom Body.
Cell Rep. 2020 Sep 15;32(11):108138. doi: 10.1016/j.celrep.2020.108138.
6
Gustatory learning and processing in the Drosophila mushroom bodies.
J Neurosci. 2015 Apr 15;35(15):5950-8. doi: 10.1523/JNEUROSCI.3930-14.2015.
7
A map of olfactory representation in the Drosophila mushroom body.
Cell. 2007 Mar 23;128(6):1205-17. doi: 10.1016/j.cell.2007.03.006.
9
Higher order visual input to the mushroom bodies in the bee, Bombus impatiens.
Arthropod Struct Dev. 2008 Nov;37(6):443-58. doi: 10.1016/j.asd.2008.03.002. Epub 2008 Jul 17.

引用本文的文献

2
Diversity of visual inputs to Kenyon cells of the Drosophila mushroom body.
Nat Commun. 2024 Jul 7;15(1):5698. doi: 10.1038/s41467-024-49616-z.
3
Sensory encoding and memory in the mushroom body: signals, noise, and variability.
Learn Mem. 2024 Jun 11;31(5). doi: 10.1101/lm.053825.123. Print 2024 May.
4
Future avenues in mushroom body research.
Learn Mem. 2024 Jun 11;31(5). doi: 10.1101/lm.053863.123. Print 2024 May.
5
Diversity of visual inputs to Kenyon cells of the mushroom body.
bioRxiv. 2023 Oct 14:2023.10.12.561793. doi: 10.1101/2023.10.12.561793.
6
Input density tunes Kenyon cell sensory responses in the Drosophila mushroom body.
Curr Biol. 2023 Jul 10;33(13):2742-2760.e12. doi: 10.1016/j.cub.2023.05.064. Epub 2023 Jun 21.
7
Hacking brain development to test models of sensory coding.
bioRxiv. 2023 Jan 26:2023.01.25.525425. doi: 10.1101/2023.01.25.525425.
8
The making of the Drosophila mushroom body.
Front Physiol. 2023 Jan 13;14:1091248. doi: 10.3389/fphys.2023.1091248. eCollection 2023.
9
Editorial for the special issue "Olfactory Coding and Circuitries".
Cell Tissue Res. 2021 Jan;383(1):1-6. doi: 10.1007/s00441-020-03389-1.

本文引用的文献

1
Structured sampling of olfactory input by the fly mushroom body.
Curr Biol. 2022 Aug 8;32(15):3334-3349.e6. doi: 10.1016/j.cub.2022.06.031. Epub 2022 Jul 6.
2
Circuit reorganization in the Drosophila mushroom body calyx accompanies memory consolidation.
Cell Rep. 2021 Mar 16;34(11):108871. doi: 10.1016/j.celrep.2021.108871.
4
Visual Input into the Drosophila melanogaster Mushroom Body.
Cell Rep. 2020 Sep 15;32(11):108138. doi: 10.1016/j.celrep.2020.108138.
5
Complete Connectomic Reconstruction of Olfactory Projection Neurons in the Fly Brain.
Curr Biol. 2020 Aug 17;30(16):3183-3199.e6. doi: 10.1016/j.cub.2020.06.042. Epub 2020 Jul 2.
6
Connectomics Analysis Reveals First-, Second-, and Third-Order Thermosensory and Hygrosensory Neurons in the Adult Drosophila Brain.
Curr Biol. 2020 Aug 17;30(16):3167-3182.e4. doi: 10.1016/j.cub.2020.06.028. Epub 2020 Jul 2.
8
Distinct Dopamine Receptor Pathways Underlie the Temporal Sensitivity of Associative Learning.
Cell. 2019 Jun 27;178(1):60-75.e19. doi: 10.1016/j.cell.2019.05.040. Epub 2019 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验