Gutmann Marcus, Bechold Julian, Seibel Jürgen, Meinel Lorenz, Lühmann Tessa
Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany.
ACS Biomater Sci Eng. 2019 Jan 14;5(1):215-233. doi: 10.1021/acsbiomaterials.8b00865. Epub 2018 Dec 10.
Metabolic glycoengineering allows insertion of non-natural monosaccharides into glycan structures during biosynthesis thereby enabling extracellular matrices (ECMs), cell surfaces, or tissues for decoration with functional cues with ultimate spatial control while deploying aqueous and toxicologically benign coupling chemistries. In this work, we discuss relevant methods in the design of metabolic glycoengineered systems, ranging from synthetic procedures to decoration of cell surfaces and ECM components by bioorthogonal chemistries for widespread biomedical applications. As representative example, we chose a tetra-acetylated azide-bearing monosaccharide as model compound to be metabolically incorporated into glycans of the glycocalyx and ECM components generated by NIH 3T3 cells. Detailed guidance in fabrication and functionalization of azide-bearing glycan structures via bioorthogonal click chemistries in glycoengineered extracellular matrices is provided. In addition, a biocompatible design space of the copper(I)-catalyzed azide-alkyne cycloaddition due to the toxicity of the copper catalyst is detailed enabling effective and safe modification of living cell systems. Thereby, this set of methods provides the blueprint enabling the design and characterization of metabolically glycoengineered systems for novel applications in drug delivery and tissue engineering.
代谢糖工程允许在生物合成过程中将非天然单糖插入聚糖结构中,从而使细胞外基质(ECM)、细胞表面或组织能够用功能性线索进行修饰,并实现最终的空间控制,同时采用水性且毒理学上无害的偶联化学方法。在这项工作中,我们讨论了代谢糖工程系统设计中的相关方法,从合成程序到通过生物正交化学修饰细胞表面和ECM成分,以实现广泛的生物医学应用。作为代表性例子,我们选择了一种带有四乙酰化叠氮化物的单糖作为模型化合物,将其代谢掺入由NIH 3T3细胞产生的糖萼和ECM成分的聚糖中。本文提供了通过糖工程化细胞外基质中的生物正交点击化学方法制备和功能化带有叠氮化物的聚糖结构的详细指导。此外,由于铜催化剂的毒性,详细阐述了铜(I)催化的叠氮化物 - 炔烃环加成的生物相容性设计空间,从而实现对活细胞系统的有效且安全的修饰。因此,这组方法提供了蓝图,能够设计和表征代谢糖工程系统,用于药物递送和组织工程中的新应用。