Panáček David, Belza Jan, Hochvaldová Lucie, Baďura Zdeněk, Zoppellaro Giorgio, Šrejber Martin, Malina Tomáš, Šedajová Veronika, Paloncýová Markéta, Langer Rostislav, Zdražil Lukáš, Zeng Jianrong, Li Lina, Zhao En, Chen Zupeng, Xiong Zhiqiang, Li Ruibin, Panáček Aleš, Večeřová Renata, Kučová Pavla, Kolář Milan, Otyepka Michal, Bakandritsos Aristides, Zbořil Radek
Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc-Holice, 783 71, Czech Republic.
Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic.
Adv Mater. 2024 Dec;36(50):e2410652. doi: 10.1002/adma.202410652. Epub 2024 Sep 23.
The outbreak of antibiotic-resistant bacteria, or "superbugs", poses a global public health hazard due to their resilience against the most effective last-line antibiotics. Identifying potent antibacterial agents capable of evading bacterial resistance mechanisms represents the ultimate defense strategy. This study shows that -the otherwise essential micronutrient- manganese turns into a broad-spectrum potent antibiotic when coordinated with a carboxylated nitrogen-doped graphene. This antibiotic material (termed NGA-Mn) not only inhibits the growth of a wide spectrum of multidrug-resistant bacteria but also heals wounds infected by bacteria in vivo and, most importantly, effectively evades bacterial resistance development. NGA-Mn exhibits up to 25-fold higher cytocompatibility to human cells than its minimum bacterial inhibitory concentration, demonstrating its potential as a next-generation antibacterial agent. Experimental findings suggest that NGA-Mn acts on the outer side of the bacterial cell membrane via a multimolecular collective binding, blocking vital functions in both Gram-positive and Gram-negative bacteria. The results underscore the potential of single-atom engineering toward potent antibiotics, offering simultaneously a long-sought solution for evading drug resistance development while being cytocompatible to human cells.
抗生素耐药性细菌(即“超级细菌”)的爆发构成了全球公共卫生危害,因为它们对最有效的一线抗生素具有耐药性。识别能够规避细菌耐药机制的强效抗菌剂是最终的防御策略。这项研究表明,原本必不可少的微量营养素——锰,与羧基化氮掺杂石墨烯配位时会变成一种广谱强效抗生素。这种抗生素材料(称为NGA-Mn)不仅能抑制多种耐多药细菌的生长,还能在体内治愈细菌感染的伤口,最重要的是,能有效避免细菌产生耐药性。NGA-Mn对人类细胞的细胞相容性比其最低细菌抑制浓度高25倍,显示出其作为下一代抗菌剂的潜力。实验结果表明,NGA-Mn通过多分子集体结合作用于细菌细胞膜外侧,阻断革兰氏阳性菌和革兰氏阴性菌的重要功能。这些结果强调了单原子工程在开发强效抗生素方面的潜力,同时为规避耐药性发展提供了长期寻求的解决方案,且对人类细胞具有细胞相容性。