Department of Computational and Data Sciences, George Mason University, Fairfax, Virginia, United States of America.
Department of Geography, University at Buffalo, Buffalo, New York, United States of America.
PLoS One. 2021 Jan 6;16(1):e0244309. doi: 10.1371/journal.pone.0244309. eCollection 2021.
The participation of automated software agents known as social bots within online social network (OSN) engagements continues to grow at an immense pace. Choruses of concern speculate as to the impact social bots have within online communications as evidence shows that an increasing number of individuals are turning to OSNs as a primary source for information. This automated interaction proliferation within OSNs has led to the emergence of social bot detection efforts to better understand the extent and behavior of social bots. While rapidly evolving and continually improving, current social bot detection efforts are quite varied in their design and performance characteristics. Therefore, social bot research efforts that rely upon only a single bot detection source will produce very limited results. Our study expands beyond the limitation of current social bot detection research by introducing an ensemble bot detection coverage framework that harnesses the power of multiple detection sources to detect a wider variety of bots within a given OSN corpus of Twitter data. To test this framework, we focused on identifying social bot activity within OSN interactions taking place on Twitter related to the 2018 U.S. Midterm Election by using three available bot detection sources. This approach clearly showed that minimal overlap existed between the bot accounts detected within the same tweet corpus. Our findings suggest that social bot research efforts must incorporate multiple detection sources to account for the variety of social bots operating in OSNs, while incorporating improved or new detection methods to keep pace with the constant evolution of bot complexity.
自动化软件代理(即社交机器人)在在线社交网络(OSN)参与中的使用继续以惊人的速度增长。越来越多的人将 OSN 作为信息的主要来源,这一事实表明,人们对社交机器人在在线交流中所产生的影响感到担忧。OSN 中这种自动化互动的扩散,导致了社会机器人检测工作的出现,以便更好地了解社会机器人的范围和行为。虽然社会机器人检测工作在不断发展和改进,但它们的设计和性能特征却大相径庭。因此,仅依靠单一的机器人检测来源的机器人研究工作将产生非常有限的结果。我们的研究通过引入一个集成的机器人检测覆盖框架,超越了当前的机器人检测研究的局限性,该框架利用多个检测源的力量来检测给定的 Twitter 数据 OSN 语料库中的更广泛的机器人种类,从而扩展了研究范围。为了测试这个框架,我们专注于通过使用三个可用的机器人检测源,识别与 2018 年美国中期选举相关的在 Twitter 上的 OSN 交互中的机器人活动。这种方法清楚地表明,在同一推文语料库中检测到的机器人账户之间几乎没有重叠。我们的研究结果表明,机器人研究工作必须整合多个检测来源,以说明在 OSN 中运作的各种机器人,同时结合改进或新的检测方法,以跟上机器人复杂性的不断演变。