Suppr超能文献

热泳和对流引起的胶体在定制液体 Clusius-Dickel 微器件中的强制堆积。

Forced Crowding of Colloids by Thermophoresis and Convection in a Custom Liquid Clusius-Dickel Microdevice.

机构信息

Materials Department, Chemical Engineering Department, University of California, Santa Barbara, California 93106, United States.

Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States.

出版信息

Langmuir. 2021 Jan 19;37(2):675-682. doi: 10.1021/acs.langmuir.0c02721. Epub 2021 Jan 6.

Abstract

We report a study demonstrating that simultaneous induction of a steady-state convection current and temperature gradient in a confined geometry can be an effective way to force crowding of dissolved particulates. To investigate this thermogravitationally driven concentration of particles in situ, we developed a microdevice capable of sustaining controlled transverse temperature gradients within a 5 cm long, 0.1 mm inner diameter capillary that allowed visualization of particle movement with standard optical microscopy. Experiments were conducted on two material systems representative of nanoscale small molecules and microscale particles. With the small molecules (aromatic dyes, 530-790 g/mol, 1-1.5 nm), thermophoretic and gravitational effects in the microdevice resulted in an asymmetrical 2× concentration change along the capillary height over 3 days. In contrast, the concentration change under similar conditions for 40-micron diameter latex colloids is 50-fold in 30 min. This dramatic difference in separation times is consistent with simulations and models of thermophoresis where the thermophoretic effect scales with particle size. Induced crowding of particulates leads to formation of accumulation and depletion zones at the bottom and top of the capillary, respectively. Both the concentration of dye molecules over time in the depletion zone and the spatial distribution of colloids over the entire capillary length were found to be good fits to simple first-order exponential decay functions. These results suggest potential applications of thermogravitational separation in developing new functional materials via thermophoretic and convective effects.

摘要

我们报告了一项研究,表明在受限几何形状中同时诱导稳态对流电流和温度梯度是迫使溶解颗粒聚集的有效方法。为了原位研究这种热重力驱动的颗粒浓缩,我们开发了一种微器件,能够在 5 厘米长、0.1 毫米内径的毛细管内维持受控的横向温度梯度,允许使用标准光学显微镜观察颗粒运动。实验在两个具有代表性的纳米级小分子和微级颗粒的材料系统上进行。对于小分子(芳香染料,530-790g/mol,1-1.5nm),微器件中的热泳和重力效应导致在 3 天内沿毛细管高度不对称地发生 2×浓度变化。相比之下,在类似条件下,40 微米直径的乳胶胶体的浓度变化在 30 分钟内增加了 50 倍。这种分离时间的巨大差异与热泳的模拟和模型一致,其中热泳效应与颗粒尺寸成正比。颗粒的诱导聚集导致在毛细管的底部和顶部分别形成积累区和耗尽区。在耗尽区中染料分子随时间的浓度以及整个毛细管长度上胶体的空间分布都被发现非常适合简单的一阶指数衰减函数。这些结果表明,通过热泳和对流效应,热重力分离在开发新型功能材料方面具有潜在的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验