Lee Namkyu, Wiegand Simone
Institute of Biological Information Processing (IBI-4: Biomacromolecular Systems and Processes) & JARA-SOFT, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany.
Department für Chemie-Physikalische Chemie, Universität zu Köln, 50939 Cologne, Germany.
Entropy (Basel). 2020 Aug 28;22(9):950. doi: 10.3390/e22090950.
In recent years, there has been increasing interest in the development of micron-scale devices utilizing thermal gradients to manipulate molecules and colloids, and to measure their thermophoretic properties quantitatively. Various devices have been realized, such as on-chip implements, micro-thermogravitational columns and other micron-scale thermophoretic cells. The advantage of the miniaturized devices lies in the reduced sample volume. Often, a direct observation of particles using various microscopic techniques is possible. On the other hand, the small dimensions lead to some technical problems, such as a precise temperature measurement on small length scale with high spatial resolution. In this review, we will focus on the "state of the art" thermophoretic micron-scale devices, covering various aspects such as generating temperature gradients, temperature measurement, and the analysis of the current micron-scale devices. We want to give researchers an orientation for their development of thermophoretic micron-scale devices for biological, chemical, analytical, and medical applications.
近年来,利用热梯度来操纵分子和胶体并定量测量其热泳性质的微米级器件的开发受到越来越多的关注。已经实现了各种器件,如片上工具、微热重力柱和其他微米级热泳池。小型化器件的优点在于样品体积减小。通常,可以使用各种显微镜技术直接观察颗粒。另一方面,小尺寸会导致一些技术问题,例如在小长度尺度上以高空间分辨率进行精确的温度测量。在本综述中,我们将聚焦于“最新技术水平”的热泳微米级器件,涵盖诸如产生温度梯度、温度测量以及对当前微米级器件的分析等各个方面。我们希望为研究人员开发用于生物、化学、分析和医学应用的热泳微米级器件提供一个方向。