Suppr超能文献

用于原发性肺黏液表皮样癌诊断的预测 CT 特征:与鳞状细胞癌和腺癌的比较。

Predictive CT features for the diagnosis of primary pulmonary mucoepidermoid carcinoma: comparison with squamous cell carcinomas and adenocarcinomas.

机构信息

Department of Medical Imaging Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, People's Republic of China.

Department of Radiology, The University of Hong Kong-Shenzhen Hospital, No.1, Haiyuan Road Futian District, Shenzhen, 518000, People's Republic of China.

出版信息

Cancer Imaging. 2021 Jan 6;21(1):2. doi: 10.1186/s40644-020-00375-2.

Abstract

BACKGROUND

To determine the predictive CT imaging features for diagnosis in patients with primary pulmonary mucoepidermoid carcinomas (PMECs).

MATERIALS AND METHODS

CT imaging features of 37 patients with primary PMECs, 76 with squamous cell carcinomas (SCCs) and 78 with adenocarcinomas were retrospectively reviewed. The difference of CT features among the PMECs, SCCs and adenocarcinomas was analyzed using univariate analysis, followed by multinomial logistic regression and receiver operating characteristic (ROC) curve analysis.

RESULTS

CT imaging features including tumor size, location, margin, shape, necrosis and degree of enhancement were significant different among the PMECs, SCCs and adenocarcinomas, as determined by univariate analysis (P < 0.05). Only lesion location, shape, margin and degree of enhancement remained independent factors in multinomial logistic regression analysis. ROC curve analysis showed that the area under curve of the obtained multinomial logistic regression model was 0.805 (95%CI: 0.704-0.906).

CONCLUSION

The prediction model derived from location, margin, shape and degree of enhancement can be used for preoperative diagnosis of PMECs.

摘要

背景

旨在确定用于原发性肺黏液表皮样癌(PMEC)患者诊断的预测性 CT 成像特征。

材料和方法

回顾性分析了 37 例原发性 PMEC、76 例鳞状细胞癌(SCC)和 78 例腺癌患者的 CT 成像特征。采用单因素分析比较 PMEC、SCC 和腺癌之间 CT 特征的差异,然后进行多项逻辑回归和受试者工作特征(ROC)曲线分析。

结果

通过单因素分析(P<0.05),发现 CT 成像特征包括肿瘤大小、位置、边缘、形状、坏死和强化程度在 PMEC、SCC 和腺癌之间存在显著差异。多项逻辑回归分析显示,病变位置、形状、边缘和强化程度仍然是独立因素。ROC 曲线分析表明,该多项逻辑回归模型的曲线下面积为 0.805(95%CI:0.704-0.906)。

结论

源自位置、边缘、形状和强化程度的预测模型可用于 PMEC 的术前诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caa1/7789188/e759c1911057/40644_2020_375_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验