Suppr超能文献

使用深度学习软件(Prediction One,索尼网络通信公司)可轻松创建预测模型,用于根据入院时的小数据集预测蛛网膜下腔出血的预后。

Easily created prediction model using deep learning software (Prediction One, Sony Network Communications Inc.) for subarachnoid hemorrhage outcomes from small dataset at admission.

作者信息

Katsuki Masahito, Kakizawa Yukinari, Nishikawa Akihiro, Yamamoto Yasunaga, Uchiyama Toshiya

机构信息

Department of Neurosurgery, Suwa Red Cross Hospital, Suwa, Nagano, Japan.

出版信息

Surg Neurol Int. 2020 Nov 6;11:374. doi: 10.25259/SNI_636_2020. eCollection 2020.

Abstract

BACKGROUND

Reliable prediction models of subarachnoid hemorrhage (SAH) outcomes are needed for decision-making of the treatment. SAFIRE score using only four variables is a good prediction scoring system. However, making such prediction models needs a large number of samples and time-consuming statistical analysis. Deep learning (DL), one of the artificial intelligence, is attractive, but there were no reports on prediction models for SAH outcomes using DL. We herein made a prediction model using DL software, Prediction One (Sony Network Communications Inc., Tokyo, Japan) and compared it to SAFIRE score.

METHODS

We used 153 consecutive aneurysmal SAH patients data in our hospital between 2012 and 2019. Modified Rankin Scale (mRS) 0-3 at 6 months was defined as a favorable outcome. We randomly divided them into 102 patients training dataset and 51 patients external validation dataset. Prediction one made the prediction model using the training dataset with internal cross-validation. We used both the created model and SAFIRE score to predict the outcomes using the external validation set. The areas under the curve (AUCs) were compared.

RESULTS

The model made by Prediction One using 28 variables had AUC of 0.848, and its AUC for the validation dataset was 0.953 (95%CI 0.900-1.000). AUCs calculated using SAFIRE score were 0.875 for the training dataset and 0.960 for the validation dataset, respectively.

CONCLUSION

We easily and quickly made prediction models using Prediction One, even with a small single-center dataset. The accuracy of the model was not so inferior to those of previous statistically calculated prediction models.

摘要

背景

治疗决策需要可靠的蛛网膜下腔出血(SAH)预后预测模型。仅使用四个变量的SAFIRE评分是一个良好的预测评分系统。然而,建立这样的预测模型需要大量样本和耗时的统计分析。深度学习(DL)作为人工智能的一种,很有吸引力,但尚无关于使用DL预测SAH预后模型的报道。我们在此使用DL软件Prediction One(索尼网络通信公司,东京,日本)建立了一个预测模型,并将其与SAFIRE评分进行比较。

方法

我们使用了2012年至2019年间我院153例连续的动脉瘤性SAH患者的数据。6个月时改良Rankin量表(mRS)0 - 3被定义为良好预后。我们将他们随机分为102例患者的训练数据集和51例患者的外部验证数据集。Prediction One使用内部交叉验证的训练数据集建立预测模型。我们使用创建的模型和SAFIRE评分对外部验证集的预后进行预测。比较曲线下面积(AUC)。

结果

Prediction One使用28个变量建立的模型AUC为0.848,其在验证数据集的AUC为0.953(95%CI 0.900 - 1.000)。使用SAFIRE评分计算的训练数据集和验证数据集的AUC分别为0.875和0.960。

结论

即使使用小的单中心数据集,我们也能使用Prediction One轻松快速地建立预测模型。该模型的准确性并不比以前通过统计计算的预测模型差很多。

相似文献

6
Non-Contrasted CT Radiomics for SAH Prognosis Prediction.用于蛛网膜下腔出血预后预测的非增强CT影像组学
Bioengineering (Basel). 2023 Aug 16;10(8):967. doi: 10.3390/bioengineering10080967.

引用本文的文献

本文引用的文献

2
Machine learning in neurosurgery: a global survey.神经外科中的机器学习:全球调查。
Acta Neurochir (Wien). 2020 Dec;162(12):3081-3091. doi: 10.1007/s00701-020-04532-1. Epub 2020 Aug 18.
8
The Japan Neurosurgical Database: Overview and Results of the First-year Survey.日本神经外科学数据库:第一年调查概述及结果。
Neurol Med Chir (Tokyo). 2020 Apr 15;60(4):165-190. doi: 10.2176/nmc.st.2019-0211. Epub 2020 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验