Suppr超能文献

使用深度学习框架(预测一号;日本索尼网络通信公司)基于气象和日历信息初步开发每日中风发生率预测模型。

Preliminary development of a prediction model for daily stroke occurrences based on meteorological and calendar information using deep learning framework (Prediction One; Sony Network Communications Inc., Japan).

作者信息

Katsuki Masahito, Narita Norio, Ishida Naoya, Watanabe Ohmi, Cai Siqi, Ozaki Dan, Sato Yoshimichi, Kato Yuya, Jia Wenting, Nishizawa Taketo, Kochi Ryuzaburo, Sato Kanako, Tominaga Teiji

机构信息

Department of Neurosurgery, Kesennuma City Hospital, Kesennuma, Miyagi, Japan.

Department of Neurosurgery, Tohoku University, Sendai, Miyagi, Japan.

出版信息

Surg Neurol Int. 2021 Jan 28;12:31. doi: 10.25259/SNI_774_2020. eCollection 2021.

Abstract

BACKGROUND

Chronologically meteorological and calendar factors were risks of stroke occurrence. However, the prediction of stroke occurrences is difficult depending on only meteorological and calendar factors. We tried to make prediction models for stroke occurrences using deep learning (DL) software, Prediction One (Sony Network Communications Inc., Tokyo, Japan), with those variables.

METHODS

We retrospectively investigated the daily stroke occurrences between 2017 and 2019. We used Prediction One software to make the prediction models for daily stroke occurrences (present or absent) using 221 chronologically meteorological and calendar factors. We made a prediction models from the 3-year dataset and evaluated their accuracies using the internal cross-validation. Areas under the curves (AUCs) of receiver operating characteristic curves were used as accuracies.

RESULTS

The 371 cerebral infarction (CI), 184 intracerebral hemorrhage (ICH), and 53 subarachnoid hemorrhage patients were included in the study. The AUCs of the several DL-based prediction models for all stroke occurrences were 0.532-0.757. Those for CI were 0.600-0.782. Those for ICH were 0.714-0.988.

CONCLUSION

Our preliminary results suggested a probability of the DL-based prediction models for stroke occurrence only by meteorological and calendar factors. In the future, by synchronizing a variety of medical information among the electronic medical records and personal smartphones as well as integrating the physical activities or meteorological conditions in real time, the prediction of stroke occurrence could be performed with high accuracy, to save medical resources, to have patients care for themselves, and to perform efficient medicine.

摘要

背景

从时间顺序来看,气象和日历因素是中风发生的风险因素。然而,仅依靠气象和日历因素来预测中风的发生是困难的。我们尝试使用深度学习(DL)软件Prediction One(索尼网络通信公司,东京,日本)以及这些变量来建立中风发生的预测模型。

方法

我们回顾性调查了2017年至2019年期间每日中风的发生情况。我们使用Prediction One软件,利用221个按时间顺序排列的气象和日历因素,建立每日中风发生情况(存在或不存在)的预测模型。我们从三年的数据集中建立预测模型,并使用内部交叉验证评估其准确性。将受试者操作特征曲线的曲线下面积(AUC)用作准确性指标。

结果

该研究纳入了371例脑梗死(CI)、184例脑出血(ICH)和53例蛛网膜下腔出血患者。几种基于深度学习的所有中风发生情况预测模型的AUC为0.532 - 0.757。CI的AUC为0.600 - 0.782。ICH的AUC为0.714 - 0.988。

结论

我们的初步结果表明,仅通过气象和日历因素建立基于深度学习的中风发生预测模型具有一定可能性。未来,通过同步电子病历和个人智能手机之间的各种医疗信息,以及实时整合身体活动或气象条件,可以高精度地进行中风发生的预测,以节省医疗资源,让患者自我护理,并实现高效医疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c269/7881509/ffb032447865/SNI-12-31-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验