Suppr超能文献

基于注意力长短期记忆网络的膝关节骨关节炎影像学标志物因果推断及其严重程度预测

Causal Discovery in Radiographic Markers of Knee Osteoarthritis and Prediction for Knee Osteoarthritis Severity With Attention-Long Short-Term Memory.

机构信息

School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States.

McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States.

出版信息

Front Public Health. 2020 Dec 18;8:604654. doi: 10.3389/fpubh.2020.604654. eCollection 2020.

Abstract

The goal of this study is to build a prognostic model to predict the severity of radiographic knee osteoarthritis (KOA) and to identify long-term disease progression risk factors for early intervention and treatment. We designed a long short-term memory (LSTM) model with an attention mechanism to predict Kellgren/Lawrence (KL) grade for knee osteoarthritis patients. The attention scores reveal a time-associated impact of different variables on KL grades. We also employed a fast causal inference (FCI) algorithm to estimate the causal relation of key variables, which will aid in clinical interpretability. Based on the clinical information of current visits, we accurately predicted the KL grade of the patient's next visits with 90% accuracy. We found that joint space narrowing was a major contributor to KOA progression. Furthermore, our causal structure model indicated that knee alignments may lead to joint space narrowing, while symptoms (swelling, grinding, catching, and limited mobility) have little impact on KOA progression. This study evaluated a broad spectrum of potential risk factors from clinical data, questionnaires, and radiographic markers that are rarely considered in previous studies. Using our statistical model, providers are able to predict the risk of the future progression of KOA, which will provide a basis for selecting proper interventions, such as proceeding to joint arthroplasty for patients. Our causal model suggests that knee alignment should be considered in the primary treatment and KOA progression was independent of clinical symptoms.

摘要

本研究旨在建立一个预测影像学膝关节骨关节炎(KOA)严重程度的预后模型,并确定长期疾病进展的风险因素,以便进行早期干预和治疗。我们设计了一个具有注意力机制的长短期记忆(LSTM)模型,用于预测膝骨关节炎患者的 Kellgren/Lawrence(KL)分级。注意力得分揭示了不同变量对 KL 分级的时间相关影响。我们还采用了快速因果推断(FCI)算法来估计关键变量的因果关系,这将有助于临床解释。基于当前就诊的临床信息,我们能够以 90%的准确率准确预测患者下一次就诊的 KL 分级。我们发现关节间隙变窄是 KOA 进展的主要原因。此外,我们的因果结构模型表明,膝关节对线可能导致关节间隙变窄,而症状(肿胀、摩擦、卡顿和活动受限)对 KOA 进展的影响较小。本研究评估了来自临床数据、问卷调查和影像学标志物的广泛的潜在风险因素,这些因素在以前的研究中很少考虑。使用我们的统计模型,医生能够预测 KOA 未来进展的风险,这将为选择适当的干预措施提供依据,例如为患者进行关节置换。我们的因果模型表明,膝关节对线应在初始治疗中考虑,而 KOA 进展与临床症状无关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f005/7779681/25112538929b/fpubh-08-604654-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验