Suppr超能文献

基于骨纹理分析和孪生神经网络得到的影像学指标预测膝骨关节炎进展:来自 OAI 和 MOST 队列的数据。

Prediction of knee osteoarthritis progression using radiological descriptors obtained from bone texture analysis and Siamese neural networks: data from OAI and MOST cohorts.

机构信息

EA 4708-I3MTO Laboratory, University of Orleans, Orléans, France.

Translational Medicine Research Platform, PRIMMO, Regional Hospital of Orleans, Orléans, France.

出版信息

Arthritis Res Ther. 2022 Mar 8;24(1):66. doi: 10.1186/s13075-022-02743-8.

Abstract

BACKGROUND

Trabecular bone texture (TBT) analysis has been identified as an imaging biomarker that provides information on trabecular bone changes due to knee osteoarthritis (KOA). In parallel with the improvement in medical imaging technologies, machine learning methods have received growing interest in the scientific osteoarthritis community to potentially provide clinicians with prognostic data from conventional knee X-ray datasets, in particular from the Osteoarthritis Initiative (OAI) and the Multicenter Osteoarthritis Study (MOST) cohorts.

PATIENTS AND METHODS

This study included 1888 patients from OAI and 683 patients from MOST cohorts. Radiographs were automatically segmented to determine 16 regions of interest. Patients with an early stage of OA risk, with Kellgren and Lawrence (KL) grade of 1 < KL < 4, were selected. The definition of OA progression was an increase in the OARSI medial joint space narrowing (mJSN) grades over 48 months in OAI and 60 months in MOST. The performance of the TBT-CNN model was evaluated and compared to well-known prediction models using logistic regression.

RESULTS

The TBT-CNN model was predictive of the JSN progression with an area under the curve (AUC) up to 0.75 in OAI and 0.81 in MOST. The predictive ability of the TBT-CNN model was invariant with respect to the acquisition modality or image quality. The prediction models performed significantly better with estimated KL (KLprob) grades than those provided by radiologists. TBT-based models significantly outperformed KLprob-based models in MOST and provided similar performances in OAI. In addition, the combined model, when trained in one cohort, was able to predict OA progression in the other cohort.

CONCLUSION

The proposed combined model provides a good performance in the prediction of mJSN over 4 to 6 years in patients with relevant KOA. Furthermore, the current study presents an important contribution in showing that TBT-based OA prediction models can work with different databases.

摘要

背景

骨小梁纹理(TBT)分析已被确定为一种影像学生物标志物,可提供膝关节骨关节炎(KOA)导致的骨小梁变化信息。随着医学成像技术的不断改进,机器学习方法在科学骨关节炎领域受到越来越多的关注,有可能为临床医生提供来自常规膝关节 X 射线数据集的预后数据,特别是来自骨关节炎倡议(OAI)和多中心骨关节炎研究(MOST)队列的数据。

患者和方法

本研究纳入了 OAI 队列的 1888 名患者和 MOST 队列的 683 名患者。对 X 线片进行自动分割以确定 16 个感兴趣区域。选择具有早期 OA 风险的患者,Kellgren 和 Lawrence(KL)分级为 1<KL<4。OA 进展的定义是在 OAI 中 48 个月和 MOST 中 60 个月时 OARSI 内侧关节间隙狭窄(mJSN)分级增加。使用逻辑回归评估 TBT-CNN 模型的性能,并与知名预测模型进行比较。

结果

TBT-CNN 模型对 JSN 进展具有预测能力,在 OAI 中的曲线下面积(AUC)高达 0.75,在 MOST 中的 AUC 高达 0.81。TBT-CNN 模型的预测能力与采集方式或图像质量无关。与放射科医生提供的 KL(KLprob)分级相比,基于 TBT 的预测模型表现更好。基于 TBT 的模型在 MOST 中明显优于 KLprob 模型,在 OAI 中表现相似。此外,在一个队列中训练的联合模型能够在另一个队列中预测 OA 进展。

结论

所提出的联合模型在预测具有相关 KOA 的患者 4 至 6 年内的 mJSN 方面具有良好的性能。此外,本研究的一个重要贡献是表明基于 TBT 的 OA 预测模型可以与不同的数据库一起使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b2d/8903620/043cd48d4e07/13075_2022_2743_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验