Suppr超能文献

一种基于深度的全局包络测试方法,用于比较两组函数,在生物医学数据中有应用。

A depth-based global envelope test for comparing two groups of functions with applications to biomedical data.

机构信息

Department of Health Sciences, Northeastern University, Boston, Massachusetts, USA.

Division of Biostatistics, Department of Population Health, Grossman School of Medicine, NYU Langone Health, New York, New York, USA.

出版信息

Stat Med. 2021 Mar 30;40(7):1639-1652. doi: 10.1002/sim.8861. Epub 2021 Jan 6.

Abstract

Functional data are commonly observed in many emerging biomedical fields and their analysis is an exciting developing area in statistics. Numerous statistical methods, such as principal components, analysis of variance, and linear regression, have been extended to functional data. The statistical analysis of functions can be significantly improved using nonparametric and robust estimators. New ideas of depth for functional data have been proposed in recent years and can be extended to image data. They provide a way of ordering curves or images from center-outward, and of defining robust order statistics in a functional context. In this paper we develop depth-based global envelope tests for comparing two groups of functions or images. In addition to providing global P-values, the proposed envelope test can be displayed graphically and indicates the specific portion(s) of the functional data (eg, in pixels or in time) that may have led to rejection of the null hypothesis. We show in a simulation study the performance of the envelope test in terms of empirical power and size in different scenarios. The proposed depth-based global approach has good power even for small differences and is robust to outliers. The methodology introduced is applied to test whether children with normal and low birth weight have similar growth pattern. We also analyzed a brain image dataset consisting of positron emission tomography scans of severe depressed patients and healthy controls. The global envelope test was used to find and visualize differences between the two groups.

摘要

功能数据在许多新兴的生物医学领域中经常被观察到,其分析是统计学中一个令人兴奋的发展领域。许多统计方法,如主成分分析、方差分析和线性回归,已经被扩展到功能数据中。使用非参数和稳健估计器可以显著提高函数的统计分析。近年来,针对功能数据的新深度思想已经被提出,并可以扩展到图像数据。它们提供了一种从中心到外围的排序曲线或图像的方法,并在功能上下文中定义了稳健的顺序统计量。在本文中,我们开发了基于深度的全局包络检验方法,用于比较两组函数或图像。除了提供全局 P 值外,所提出的包络检验还可以以图形方式显示,并指出功能数据(例如,在像素或时间)的特定部分可能导致对零假设的拒绝。我们在不同的场景中进行了模拟研究,以检验包络检验在经验功效和大小方面的性能。即使在差异较小的情况下,基于深度的全局方法也具有良好的功效,并且对异常值具有稳健性。所介绍的方法学被应用于检验正常出生体重和低出生体重的儿童是否具有相似的生长模式。我们还分析了一组由严重抑郁患者和健康对照的正电子发射断层扫描组成的大脑图像数据集。使用全局包络检验来发现和可视化两组之间的差异。

相似文献

5
Comparing extent of activation: a robust permutation approach.比较激活程度:一种稳健的置换方法。
Neuroimage. 2005 Feb 1;24(3):715-22. doi: 10.1016/j.neuroimage.2004.09.037. Epub 2004 Nov 14.
10
Functional generalized linear models with images as predictors.以图像作为预测变量的功能广义线性模型。
Biometrics. 2010 Mar;66(1):61-9. doi: 10.1111/j.1541-0420.2009.01233.x. Epub 2009 May 8.

引用本文的文献

本文引用的文献

2
Corrected confidence bands for functional data using principal components.使用主成分对函数型数据进行校正的置信带
Biometrics. 2013 Mar;69(1):41-51. doi: 10.1111/j.1541-0420.2012.01808.x. Epub 2012 Sep 24.
3
The multivariate L1-median and associated data depth.多元L1中位数及相关数据深度。
Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1423-6. doi: 10.1073/pnas.97.4.1423.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验