Boland Joanna, Telesca Donatello, Sugar Catherine, Jeste Shafali, Dickinson Abigail, DiStefano Charlotte, Şentürk Damla
Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA 90025, USA.
Department of Statistics, University of California, Los Angeles, Los Angeles, CA 90025, USA.
J Data Sci. 2023 Oct;21(4):715-734. doi: 10.6339/23-jds1085. Epub 2023 Jan 19.
Bayesian methods provide direct inference in functional data analysis applications without reliance on bootstrap techniques. A major tool in functional data applications is the functional principal component analysis which decomposes the data around a common mean function and identifies leading directions of variation. Bayesian functional principal components analysis (BFPCA) provides uncertainty quantification on the estimated functional model components via the posterior samples obtained. We propose central posterior envelopes (CPEs) for BFPCA based on functional depth as a descriptive visualization tool to summarize variation in the posterior samples of the estimated functional model components, contributing to uncertainty quantification in BFPCA. The proposed BFPCA relies on a latent factor model and targets model parameters within a mixed effects modeling framework using modified multiplicative gamma process shrinkage priors on the variance components. Functional depth provides a center-outward order to a sample of functions. We utilize modified band depth and modified volume depth for ordering of a sample of functions and surfaces, respectively, to derive at CPEs of the mean and eigenfunctions within the BFPCA framework. The proposed CPEs are showcased in extensive simulations. Finally, the proposed CPEs are applied to the analysis of a sample of power spectral densities (PSD) from resting state electroencephalography (EEG) where they lead to novel insights on diagnostic group differences among children diagnosed with autism spectrum disorder and their typically developing peers across age.
贝叶斯方法在功能数据分析应用中提供直接推断,无需依赖自助法技术。功能数据应用中的一个主要工具是功能主成分分析,它围绕一个共同的均值函数对数据进行分解,并识别主要的变化方向。贝叶斯功能主成分分析(BFPCA)通过获得的后验样本对估计的功能模型成分进行不确定性量化。我们基于功能深度为BFPCA提出中心后验包络(CPE),作为一种描述性可视化工具,用于总结估计的功能模型成分后验样本中的变化,有助于BFPCA中的不确定性量化。所提出的BFPCA依赖于一个潜在因子模型,并在混合效应建模框架内使用方差成分上的修正乘法伽马过程收缩先验来确定模型参数。功能深度为函数样本提供了从中心向外的排序。我们分别利用修正带深度和修正体积深度对函数样本和曲面进行排序,以在BFPCA框架内得出均值和特征函数的CPE。所提出的CPE在广泛的模拟中得到展示。最后,将所提出的CPE应用于对静息态脑电图(EEG)的功率谱密度(PSD)样本的分析,从而对被诊断为自闭症谱系障碍的儿童及其不同年龄段的典型发育同龄人之间的诊断组差异有了新的见解。