Suppr超能文献

贝叶斯功能主成分分析的中心后验包络

Central Posterior Envelopes for Bayesian Functional Principal Component Analysis.

作者信息

Boland Joanna, Telesca Donatello, Sugar Catherine, Jeste Shafali, Dickinson Abigail, DiStefano Charlotte, Şentürk Damla

机构信息

Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA 90025, USA.

Department of Statistics, University of California, Los Angeles, Los Angeles, CA 90025, USA.

出版信息

J Data Sci. 2023 Oct;21(4):715-734. doi: 10.6339/23-jds1085. Epub 2023 Jan 19.

Abstract

Bayesian methods provide direct inference in functional data analysis applications without reliance on bootstrap techniques. A major tool in functional data applications is the functional principal component analysis which decomposes the data around a common mean function and identifies leading directions of variation. Bayesian functional principal components analysis (BFPCA) provides uncertainty quantification on the estimated functional model components via the posterior samples obtained. We propose central posterior envelopes (CPEs) for BFPCA based on functional depth as a descriptive visualization tool to summarize variation in the posterior samples of the estimated functional model components, contributing to uncertainty quantification in BFPCA. The proposed BFPCA relies on a latent factor model and targets model parameters within a mixed effects modeling framework using modified multiplicative gamma process shrinkage priors on the variance components. Functional depth provides a center-outward order to a sample of functions. We utilize modified band depth and modified volume depth for ordering of a sample of functions and surfaces, respectively, to derive at CPEs of the mean and eigenfunctions within the BFPCA framework. The proposed CPEs are showcased in extensive simulations. Finally, the proposed CPEs are applied to the analysis of a sample of power spectral densities (PSD) from resting state electroencephalography (EEG) where they lead to novel insights on diagnostic group differences among children diagnosed with autism spectrum disorder and their typically developing peers across age.

摘要

贝叶斯方法在功能数据分析应用中提供直接推断,无需依赖自助法技术。功能数据应用中的一个主要工具是功能主成分分析,它围绕一个共同的均值函数对数据进行分解,并识别主要的变化方向。贝叶斯功能主成分分析(BFPCA)通过获得的后验样本对估计的功能模型成分进行不确定性量化。我们基于功能深度为BFPCA提出中心后验包络(CPE),作为一种描述性可视化工具,用于总结估计的功能模型成分后验样本中的变化,有助于BFPCA中的不确定性量化。所提出的BFPCA依赖于一个潜在因子模型,并在混合效应建模框架内使用方差成分上的修正乘法伽马过程收缩先验来确定模型参数。功能深度为函数样本提供了从中心向外的排序。我们分别利用修正带深度和修正体积深度对函数样本和曲面进行排序,以在BFPCA框架内得出均值和特征函数的CPE。所提出的CPE在广泛的模拟中得到展示。最后,将所提出的CPE应用于对静息态脑电图(EEG)的功率谱密度(PSD)样本的分析,从而对被诊断为自闭症谱系障碍的儿童及其不同年龄段的典型发育同龄人之间的诊断组差异有了新的见解。

相似文献

1
Central Posterior Envelopes for Bayesian Functional Principal Component Analysis.
J Data Sci. 2023 Oct;21(4):715-734. doi: 10.6339/23-jds1085. Epub 2023 Jan 19.
2
Hybrid principal components analysis for region-referenced longitudinal functional EEG data.
Biostatistics. 2020 Jan 1;21(1):139-157. doi: 10.1093/biostatistics/kxy034.
3
Multilevel hybrid principal components analysis for region-referenced functional electroencephalography data.
Stat Med. 2022 Aug 30;41(19):3737-3757. doi: 10.1002/sim.9445. Epub 2022 May 25.
4
A multi-dimensional functional principal components analysis of EEG data.
Biometrics. 2017 Sep;73(3):999-1009. doi: 10.1111/biom.12635. Epub 2017 Jan 10.
5
REGION-REFERENCED SPECTRAL POWER DYNAMICS OF EEG SIGNALS: A HIERARCHICAL MODELING APPROACH.
Ann Appl Stat. 2020 Dec;14(4):2053-2068. doi: 10.1214/20-aoas1374. Epub 2020 Dec 19.
6
Covariate-adjusted hybrid principal components analysis for region-referenced functional EEG data.
Stat Interface. 2022;15(2):209-223. doi: 10.4310/21-sii712. Epub 2022 Jan 11.
7
Day-to-Day Test-Retest Reliability of EEG Profiles in Children With Autism Spectrum Disorder and Typical Development.
Front Integr Neurosci. 2020 Apr 30;14:21. doi: 10.3389/fnint.2020.00021. eCollection 2020.
8
Bayesian Inference for Mixed Model-Based Genome-Wide Analysis of Expression Quantitative Trait Loci by Gibbs Sampling.
Front Genet. 2019 Mar 22;10:199. doi: 10.3389/fgene.2019.00199. eCollection 2019.
9
Bivariate functional principal components analysis: considerations for use with multivariate movement signatures in sports biomechanics.
Sports Biomech. 2019 Feb;18(1):10-27. doi: 10.1080/14763141.2017.1384050. Epub 2017 Nov 10.
10
Functional principal component models for sparse and irregularly spaced data by Bayesian inference.
J Appl Stat. 2023 Apr 5;51(7):1287-1317. doi: 10.1080/02664763.2023.2197587. eCollection 2024.

本文引用的文献

1
Covariate-adjusted hybrid principal components analysis for region-referenced functional EEG data.
Stat Interface. 2022;15(2):209-223. doi: 10.4310/21-sii712. Epub 2022 Jan 11.
2
Multilevel hybrid principal components analysis for region-referenced functional electroencephalography data.
Stat Med. 2022 Aug 30;41(19):3737-3757. doi: 10.1002/sim.9445. Epub 2022 May 25.
3
REGION-REFERENCED SPECTRAL POWER DYNAMICS OF EEG SIGNALS: A HIERARCHICAL MODELING APPROACH.
Ann Appl Stat. 2020 Dec;14(4):2053-2068. doi: 10.1214/20-aoas1374. Epub 2020 Dec 19.
4
A depth-based global envelope test for comparing two groups of functions with applications to biomedical data.
Stat Med. 2021 Mar 30;40(7):1639-1652. doi: 10.1002/sim.8861. Epub 2021 Jan 6.
5
Bayesian analysis of longitudinal and multidimensional functional data.
Biostatistics. 2022 Apr 13;23(2):558-573. doi: 10.1093/biostatistics/kxaa041.
6
Day-to-Day Test-Retest Reliability of EEG Profiles in Children With Autism Spectrum Disorder and Typical Development.
Front Integr Neurosci. 2020 Apr 30;14:21. doi: 10.3389/fnint.2020.00021. eCollection 2020.
7
Covariate-adjusted region-referenced generalized functional linear model for EEG data.
Stat Med. 2019 Dec 30;38(30):5587-5602. doi: 10.1002/sim.8384. Epub 2019 Oct 28.
8
Hybrid principal components analysis for region-referenced longitudinal functional EEG data.
Biostatistics. 2020 Jan 1;21(1):139-157. doi: 10.1093/biostatistics/kxy034.
9
Fast covariance estimation for sparse functional data.
Stat Comput. 2018;28(3):511-522. doi: 10.1007/s11222-017-9744-8. Epub 2017 Apr 11.
10
Conditional Spectral Analysis of Replicated Multiple Time Series with Application to Nocturnal Physiology.
J Am Stat Assoc. 2017;112(520):1405-1416. doi: 10.1080/01621459.2017.1281811. Epub 2017 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验