Population Health Unit, Kenya Medical Research Institute-Wellcome Trust Research Programme, P.O. Box 43640-00100, Nairobi, Kenya.
Geography and Environmental Science, University of Southampton, Southampton, SO17 1BJ, UK.
Malar J. 2021 Jan 7;20(1):22. doi: 10.1186/s12936-020-03529-6.
There is an increasing need for finer spatial resolution data on malaria risk to provide micro-stratification to guide sub-national strategic plans. Here, spatial-statistical techniques are used to exploit routine data to depict sub-national heterogeneities in test positivity rate (TPR) for malaria among patients attending health facilities in Kenya.
Routine data from health facilities (n = 1804) representing all ages over 24 months (2018-2019) were assembled across 8 counties (62 sub-counties) in Western Kenya. Statistical model-based approaches were used to quantify heterogeneities in TPR and uncertainty at fine spatial resolution adjusting for missingness, population distribution, spatial data structure, month, and type of health facility.
The overall monthly reporting rate was 78.7% (IQR 75.0-100.0) and public-based health facilities were more likely than private facilities to report ≥ 12 months (OR 5.7, 95% CI 4.3-7.5). There was marked heterogeneity in population-weighted TPR with sub-counties in the north of the lake-endemic region exhibiting the highest rates (exceedance probability > 70% with 90% certainty) where approximately 2.7 million (28.5%) people reside. At micro-level the lowest rates were in 14 sub-counties (exceedance probability < 30% with 90% certainty) where approximately 2.2 million (23.1%) people lived and indoor residual spraying had been conducted since 2017.
The value of routine health data on TPR can be enhanced when adjusting for underlying population and spatial structures of the data, highlighting small-scale heterogeneities in malaria risk often masked in broad national stratifications. Future research should aim at relating these heterogeneities in TPR with traditional community-level prevalence to improve tailoring malaria control activities at sub-national levels.
为了提供微观分层以指导国家以下战略计划,人们对疟疾风险的空间分辨率数据提出了更高的要求。在这里,空间统计技术被用于利用常规数据来描绘肯尼亚医疗机构就诊的疟疾患者的检测阳性率(TPR)的国家以下异质性。
在肯尼亚西部的 8 个县(62 个次级县)内,汇总了 2018 年至 2019 年期间所有 24 个月以上年龄的常规医疗机构数据(n=1804)。使用基于统计模型的方法,量化了 TPR 的异质性以及在精细空间分辨率下的不确定性,同时考虑了缺失、人口分布、空间数据结构、月份和医疗机构类型的因素。
总体每月报告率为 78.7%(IQR 75.0-100.0),公共卫生机构比私立机构更有可能报告≥12 个月(OR 5.7,95%CI 4.3-7.5)。人群加权 TPR 存在明显的异质性,湖岸流行地区北部的次级县报告的 TPR 最高(在 90%置信区间内,超过 70%的可能性),大约有 270 万人(28.5%)居住在那里。在微观层面上,TPR 最低的是 14 个次级县(在 90%置信区间内,超过 30%的可能性),大约有 220 万人(23.1%)居住在那里,并且自 2017 年以来一直进行室内残留喷洒。
在调整数据的基础人口和空间结构后,可以提高常规卫生数据在 TPR 方面的价值,突出了疟疾风险的小规模异质性,这些异质性在广泛的国家分层中常常被掩盖。未来的研究应该旨在将这些 TPR 异质性与传统的社区层面的患病率联系起来,以改善国家以下层面的疟疾控制活动的针对性。