Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg. 42, Natick, MA, 01760, USA.
Oak Ridge Institute for Science and Education, Belcamp, MD, USA.
J Int Soc Sports Nutr. 2021 Jan 7;18(1):4. doi: 10.1186/s12970-020-00401-5.
The effects of ingesting varying essential amino acid (EAA)/protein-containing food formats on protein kinetics during energy deficit are undetermined. Therefore, recommendations for EAA/protein food formats necessary to optimize both whole-body protein balance and muscle protein synthesis (MPS) during energy deficit are unknown. We measured protein kinetics after consuming iso-nitrogenous amounts of free-form essential amino acid-enriched whey (EAA + W; 34.7 g protein, 24 g EAA sourced from whey and free-form EAA), whey (WHEY; 34.7 g protein, 18.7 g EAA), or a mixed-macronutrient meal (MEAL; 34.7 g protein, 11.4 g EAA) after exercise during short-term energy deficit.
Ten adults (mean ± SD; 21 ± 4 y; 25.7 ± 1.7 kg/m) completed a randomized, double-blind crossover study consisting of three, 5 d energy-deficit periods (- 30 ± 3% of total energy requirements), separated by 14 d. Whole-body protein synthesis (PS), breakdown (PB), and net balance (NET) were determined at rest and in response to combination exercise consisting of load carriage treadmill walking, deadlifts, and box step-ups at the end of each energy deficit using L-[H]-phenylalanine and L-[H]-tyrosine infusions. Treatments were ingested immediately post-exercise. Mixed-muscle protein synthesis (mixed-MPS) was measured during exercise through recovery.
Change (Δ postabsorptive + exercise to postprandial + recovery [mean treatment difference (95%CI)]) in whole-body (g/180 min) PS was 15.8 (9.8, 21.9; P = 0.001) and 19.4 (14.8, 24.0; P = 0.001) greater for EAA + W than WHEY and MEAL, respectively, with no difference between WHEY and MEAL. ΔPB was - 6.3 (- 11.5, - 1.18; P = 0.02) greater for EAA + W than WHEY and - 7.7 (- 11.9, - 3.6; P = 0.002) greater for MEAL than WHEY, with no difference between EAA + W and MEAL. ΔNET was 22.1 (20.5, 23.8; P = 0.001) and 18.0 (16.5, 19.5; P = 0.00) greater for EAA + W than WHEY and MEAL, respectively, while ΔNET was 4.2 (2.7, 5.6; P = 0.001) greater for MEAL than WHEY. Mixed-MPS did not differ between treatments.
While mixed-MPS was similar across treatments, combining free-form EAA with whey promotes greater whole-body net protein balance during energy deficit compared to iso-nitrogenous amounts of whey or a mixed-macronutrient meal.
ClinicalTrials.gov, Identifier no. NCT04004715 . Retrospectively registered 28 June 2019, first enrollment 6 June 2019.
摄入不同的必需氨基酸(EAA)/蛋白质含量的食物形式对能量不足期间的蛋白质动力学的影响尚未确定。因此,尚不清楚在能量不足期间优化全身蛋白质平衡和肌肉蛋白质合成(MPS)所需的 EAA/蛋白质食物形式的建议。我们在短期能量不足期间运动后,测量了摄入等氮量的游离必需氨基酸强化乳清(EAA + W;34.7g 蛋白质,24g EAA 来自乳清和游离 EAA)、乳清(WHEY;34.7g 蛋白质,18.7g EAA)或混合宏量营养素膳食(MEAL;34.7g 蛋白质,11.4g EAA)后蛋白质动力学。
10 名成年人(平均 ± 标准差;21 ± 4 岁;25.7 ± 1.7kg/m2)完成了一项随机、双盲交叉研究,包括三个为期 5 天的能量不足期(总能量需求减少 30 ± 3%),每个能量不足期之间间隔 14 天。使用 L-[H]-苯丙氨酸和 L-[H]-酪氨酸输注,在 rest 和对包括负重跑步机步行、硬拉和箱式踏步在内的组合运动的响应中,确定了全身蛋白质合成(PS)、分解(PB)和净平衡(NET)。在运动后立即摄入治疗。在运动期间通过恢复测量混合肌肉蛋白质合成(混合-MPS)。
全身(g/180min)PS 的变化(吸收后+运动至餐后+恢复[平均治疗差异(95%CI)])分别为 15.8(9.8,21.9;P=0.001)和 19.4(14.8,24.0;P=0.001)EAA + W 比 WHEY 和 MEAL 分别高,而 WHEY 和 MEAL 之间没有差异。EAA + W 的 PB 比 WHEY 高-6.3(-11.5,-1.18;P=0.02),比 MEAL 高-7.7(-11.9,-3.6;P=0.002),而 EAA + W 和 MEAL 之间没有差异。EAA + W 的 NET 比 WHEY 高 22.1(20.5,23.8;P=0.001)和 18.0(16.5,19.5;P=0.00),而 MEAL 比 WHEY 高 4.2(2.7,5.6;P=0.001)。治疗之间的混合-MPS 没有差异。
虽然混合-MPS 在治疗之间相似,但与等氮量的乳清或混合宏量营养素膳食相比,将游离 EAA 与乳清结合可在能量不足期间促进更大的全身净蛋白质平衡。
ClinicalTrials.gov,标识符编号 NCT04004715。于 2019 年 6 月 28 日回顾性注册,首次招募 2019 年 6 月 6 日。