Suppr超能文献

使用定量血管造影方法和数据驱动模型评估取栓术中的再灌注状态(mTICI)。

Use of quantitative angiographic methods with a data-driven model to evaluate reperfusion status (mTICI) during thrombectomy.

机构信息

Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, 14228, USA.

Canon Stroke and Vascular Research Center, Buffalo, NY, 14203, USA.

出版信息

Neuroradiology. 2021 Sep;63(9):1429-1439. doi: 10.1007/s00234-020-02598-3. Epub 2021 Jan 7.

Abstract

PURPOSE

Intra-procedural assessment of reperfusion during mechanical thrombectomy (MT) for emergent large vessel occlusion (LVO) stroke is traditionally based on subjective evaluation of digital subtraction angiography (DSA). However, semi-quantitative diagnostic tools which encode hemodynamic properties in DSAs, such as angiographic parametric imaging (API), exist and may be used for evaluation of reperfusion during MT. The objective of this study was to use data-driven approaches, such as convolutional neural networks (CNNs) with API maps, to automatically assess reperfusion in the neuro-vasculature during MT procedures based on the modified thrombolysis in cerebral infarction (mTICI) scale.

METHODS

DSAs from patients undergoing MTs of anterior circulation LVOs were collected, temporally cropped to isolate late arterial and capillary phases, and quantified using API peak height (PH) maps. PH maps were normalized to reduce injection variability. A CNN was developed, trained, and tested to classify PH maps into 2 outcomes (mTICI 0,1,2a/mTICI 2b,2c,3) or 3 outcomes (mTICI 0,1,2a/mTICI 2b/mTICI 2c,3), respectively. Ensembled networks were used to combine information from multiple views (anteroposterior and lateral).

RESULTS

The study included 383 DSAs. For the 2-outcome classification, average accuracy was 81.0% (95% CI, 79.0-82.9%), and the area under the receiver operating characteristic curve (AUROC) was 0.86 (0.84-0.88). For the 3-outcome classification, average accuracy was 64.0% (62.0-66.0), and AUROC values were 0.85 (0.83-0.87), 0.74 (0.71-0.77), and 0.78 (0.76-0.81) for the mTICI 0,1,2a, mTICI 2b, and mTICI 2c,3 classes, respectively.

CONCLUSION

This study demonstrated the feasibility of using hemodynamic information in API maps with data-driven models to autonomously assess intra-procedural reperfusion during MT.

摘要

目的

在机械血栓切除(MT)治疗紧急大血管闭塞(LVO)卒中期间,对再灌注进行术中评估传统上基于数字减影血管造影(DSA)的主观评估。然而,存在编码 DSA 中血流动力学特性的半定量诊断工具,如血管造影参数成像(API),并可用于评估 MT 期间的再灌注。本研究的目的是使用数据驱动方法,如带有 API 图的卷积神经网络(CNN),根据改良脑梗死溶栓(mTICI)评分,自动评估 MT 过程中神经血管的再灌注情况。

方法

收集接受前循环 LVO MT 的患者的 DSA,按时间裁剪以隔离晚期动脉期和毛细血管期,并使用 API 峰值高度(PH)图进行量化。将 PH 图归一化以减少注射变异性。开发、训练和测试 CNN 将 PH 图分类为 2 种结果(mTICI 0、1、2a/mTICI 2b、2c、3)或 3 种结果(mTICI 0、1、2a/mTICI 2b/mTICI 2c、3)。使用集成网络将来自多个视图(前后和侧位)的信息结合起来。

结果

该研究包括 383 个 DSA。对于 2 种结果分类,平均准确率为 81.0%(95%CI,79.0-82.9%),接收器操作特征曲线(AUROC)下面积为 0.86(0.84-0.88)。对于 3 种结果分类,平均准确率为 64.0%(62.0-66.0%),AUROC 值分别为 0.85(0.83-0.87)、0.74(0.71-0.77)和 0.78(0.76-0.81),用于 mTICI 0、1、2a、mTICI 2b 和 mTICI 2c、3 类。

结论

本研究证明了使用 API 图中的血流动力学信息和数据驱动模型自主评估 MT 期间术中再灌注的可行性。

相似文献

7
Is a picture-perfect thrombectomy necessary in acute ischemic stroke?急性缺血性脑卒中是否需要完美的取栓术?
J Neurointerv Surg. 2022 Feb;14(2):111-116. doi: 10.1136/neurintsurg-2020-017193. Epub 2021 Feb 16.

引用本文的文献

本文引用的文献

3
SciPy 1.0: fundamental algorithms for scientific computing in Python.SciPy 1.0:Python 中的科学计算基础算法。
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验