Bhurwani Mohammad Mahdi Shiraz, Snyder Kenneth V, Waqas Muhammad, Mokin Maxim, Rava Ryan A, Podgorsak Alexander R, Sommer Kelsey N, Davies Jason M, Levy Elad I, Siddiqui Adnan H, Ionita Ciprian N
Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260.
Canon Stroke and Vascular Research Center, Buffalo, NY 14203.
Proc SPIE Int Soc Opt Eng. 2021 Feb;11597. doi: 10.1117/12.2580358. Epub 2021 Feb 15.
Digital subtraction angiography (DSA) is the main imaging modality used to assess reperfusion during mechanical thrombectomy (MT) when treating large vessel occlusion (LVO) ischemic strokes. To improve this visual and subjective assessment, hybrid models combining angiographic parametric imaging (API) with deep learning tools have been proposed. These models use convolutional neural networks (CNN) with single view individual API maps, thus restricting use of complementary information from multiple views and maps resulting in loss of relevant clinical information. This study investigates use of ensemble networks to combine hemodynamic information from multiple bi-plane API maps to assess level of reperfusion. Three-hundred-eighty-three anteroposterior (AP) and lateral view DSAs were retrospectively collected from patients who underwent MTs of anterior circulation LVOs. API peak height (PH) and area under time density curve (AUC) maps were generated. CNNs were developed to classify maps as adequate/inadequate reperfusion as labeled by two neuro-interventionalists. Outputs from individual networks were combined by weighting each output, using a grid search algorithm. Ensembled, AP-AUC, AP-PH, lateral-AUC, and lateral-PH networks achieved accuracies of 83.0% (95% confidence-interval: 81.2%-84.8%), 74.4% (72.0%-76.7%), 74.2% (72.8%-75.7%), 74.9% (72.2%-77.7%), and 76.9% (74.4%-79.5%); area under receiver operating characteristic curves of 0.86 (0.84-0.88), 0.81 (0.79-0.83), 0.83 (0.81-0.84), 0.82 (0.8-0.84), and 0.84 (0.82-0.87); and Matthews correlation coefficients of 0.66 (0.63-0.70), 0.48 (0.43-0.53), 0.49 (0.46-0.52), 0.51 (0.45-0.56), and 0.54 (0.49-0.59) respectively. Ensembled network performance was significantly better than individual networks (McNemar's p-value<0.05). This study proved feasibility of using ensemble networks to combine hemodynamic information from multiple bi-plane API maps to assess level of reperfusion during MTs.
数字减影血管造影(DSA)是治疗大血管闭塞(LVO)缺血性卒中进行机械取栓(MT)时评估再灌注的主要成像方式。为了改善这种视觉和主观评估,已有人提出将血管造影参数成像(API)与深度学习工具相结合的混合模型。这些模型使用带有单视图个体API图的卷积神经网络(CNN),从而限制了来自多个视图和图的补充信息的使用,导致相关临床信息丢失。本研究探讨使用集成网络来组合来自多个双平面API图的血流动力学信息,以评估再灌注水平。从接受前循环LVO机械取栓的患者中回顾性收集了383例前后位(AP)和侧位DSA。生成了API峰值高度(PH)和时间密度曲线下面积(AUC)图。开发了CNN,将图分类为由两名神经介入专家标记的充分/不充分再灌注。使用网格搜索算法对各个网络的输出进行加权组合。集成的AP-AUC、AP-PH、侧位-AUC和侧位-PH网络的准确率分别为83.0%(95%置信区间:81.2%-84.8%)、74.4%(72.0%-76.7%)、74.2%(72.8%-75.7%)、74.9%(72.2%-77.7%)和76.9%(74.4%-79.5%);受试者操作特征曲线下面积分别为0.86(0.84-0.88)、0.81(0.79-0.83)、0.83(0.81-0.84)、0.82(0.8-0.84)和0.84(0.82-0.87);马修斯相关系数分别为0.66(0.63-0.70)、0.48(0.43-0.53)、0.49(0.46-0.52)、0.51(0.45-0.56)和0.54(0.49-0.59)。集成网络的性能明显优于单个网络(McNemar p值<0.05)。本研究证明了使用集成网络组合来自多个双平面API图的血流动力学信息以评估机械取栓期间再灌注水平的可行性。