Suppr超能文献

使用双平面定量血管造影成像结合集成神经网络评估机械取栓期间的再灌注状态。

Use of biplane quantitative angiographic imaging with ensemble neural networks to assess reperfusion status during mechanical thrombectomy.

作者信息

Bhurwani Mohammad Mahdi Shiraz, Snyder Kenneth V, Waqas Muhammad, Mokin Maxim, Rava Ryan A, Podgorsak Alexander R, Sommer Kelsey N, Davies Jason M, Levy Elad I, Siddiqui Adnan H, Ionita Ciprian N

机构信息

Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260.

Canon Stroke and Vascular Research Center, Buffalo, NY 14203.

出版信息

Proc SPIE Int Soc Opt Eng. 2021 Feb;11597. doi: 10.1117/12.2580358. Epub 2021 Feb 15.

Abstract

Digital subtraction angiography (DSA) is the main imaging modality used to assess reperfusion during mechanical thrombectomy (MT) when treating large vessel occlusion (LVO) ischemic strokes. To improve this visual and subjective assessment, hybrid models combining angiographic parametric imaging (API) with deep learning tools have been proposed. These models use convolutional neural networks (CNN) with single view individual API maps, thus restricting use of complementary information from multiple views and maps resulting in loss of relevant clinical information. This study investigates use of ensemble networks to combine hemodynamic information from multiple bi-plane API maps to assess level of reperfusion. Three-hundred-eighty-three anteroposterior (AP) and lateral view DSAs were retrospectively collected from patients who underwent MTs of anterior circulation LVOs. API peak height (PH) and area under time density curve (AUC) maps were generated. CNNs were developed to classify maps as adequate/inadequate reperfusion as labeled by two neuro-interventionalists. Outputs from individual networks were combined by weighting each output, using a grid search algorithm. Ensembled, AP-AUC, AP-PH, lateral-AUC, and lateral-PH networks achieved accuracies of 83.0% (95% confidence-interval: 81.2%-84.8%), 74.4% (72.0%-76.7%), 74.2% (72.8%-75.7%), 74.9% (72.2%-77.7%), and 76.9% (74.4%-79.5%); area under receiver operating characteristic curves of 0.86 (0.84-0.88), 0.81 (0.79-0.83), 0.83 (0.81-0.84), 0.82 (0.8-0.84), and 0.84 (0.82-0.87); and Matthews correlation coefficients of 0.66 (0.63-0.70), 0.48 (0.43-0.53), 0.49 (0.46-0.52), 0.51 (0.45-0.56), and 0.54 (0.49-0.59) respectively. Ensembled network performance was significantly better than individual networks (McNemar's p-value<0.05). This study proved feasibility of using ensemble networks to combine hemodynamic information from multiple bi-plane API maps to assess level of reperfusion during MTs.

摘要

数字减影血管造影(DSA)是治疗大血管闭塞(LVO)缺血性卒中进行机械取栓(MT)时评估再灌注的主要成像方式。为了改善这种视觉和主观评估,已有人提出将血管造影参数成像(API)与深度学习工具相结合的混合模型。这些模型使用带有单视图个体API图的卷积神经网络(CNN),从而限制了来自多个视图和图的补充信息的使用,导致相关临床信息丢失。本研究探讨使用集成网络来组合来自多个双平面API图的血流动力学信息,以评估再灌注水平。从接受前循环LVO机械取栓的患者中回顾性收集了383例前后位(AP)和侧位DSA。生成了API峰值高度(PH)和时间密度曲线下面积(AUC)图。开发了CNN,将图分类为由两名神经介入专家标记的充分/不充分再灌注。使用网格搜索算法对各个网络的输出进行加权组合。集成的AP-AUC、AP-PH、侧位-AUC和侧位-PH网络的准确率分别为83.0%(95%置信区间:81.2%-84.8%)、74.4%(72.0%-76.7%)、74.2%(72.8%-75.7%)、74.9%(72.2%-77.7%)和76.9%(74.4%-79.5%);受试者操作特征曲线下面积分别为0.86(0.84-0.88)、0.81(0.79-0.83)、0.83(0.81-0.84)、0.82(0.8-0.84)和0.84(0.82-0.87);马修斯相关系数分别为0.66(0.63-0.70)、0.48(0.43-0.53)、0.49(0.46-0.52)、0.51(0.45-0.56)和0.54(0.49-0.59)。集成网络的性能明显优于单个网络(McNemar p值<0.05)。本研究证明了使用集成网络组合来自多个双平面API图的血流动力学信息以评估机械取栓期间再灌注水平的可行性。

相似文献

7
Exploring Reperfusion Following Endovascular Thrombectomy.探讨血管内血栓切除术后的再灌注。
Stroke. 2019 Sep;50(9):2389-2395. doi: 10.1161/STROKEAHA.119.025537. Epub 2019 Aug 1.

本文引用的文献

3
SciPy 1.0: fundamental algorithms for scientific computing in Python.SciPy 1.0:Python 中的科学计算基础算法。
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验