Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea.
Graduate School of Artificial Intelligence, KAIST, Daejeon, Republic of Korea.
Surg Endosc. 2022 Jan;36(1):57-65. doi: 10.1007/s00464-020-08236-6. Epub 2021 Jan 7.
Esophagogastroduodenoscopy (EGD) is generally a safe procedure, but adverse events often occur. This highlights the necessity of the quality control of EGD. Complete visualization and photo documentation of upper gastrointestinal (UGI) tracts are important measures in quality control of EGD. To evaluate these measures in large scale, we developed an AI-driven quality control system for EGD through convolutional neural networks (CNNs) using archived endoscopic images.
We retrospectively collected and labeled images from 250 EGD procedures, a total of 2599 images from eight locations of the UGI tract, using the European Society of Gastrointestinal Endoscopy (ESGE) photo documentation methods. The label confirmed by five experts was considered the gold standard. We developed a CNN model for multi-class classification of EGD images to one of the eight locations and binary classification of each EGD procedure based on its completeness.
Our CNN model successfully classified the EGD images into one of the eight regions of UGI tracts with 97.58% accuracy, 97.42% sensitivity, 99.66% specificity, 97.50% positive predictive value (PPV), and 99.66% negative predictive value (NPV). Our model classified the completeness of EGD with 89.20% accuracy, 89.20% sensitivity, 100.00% specificity, 100.00% PPV, and 64.94% NPV. We analyzed the credibility of our model using a probability heatmap.
We constructed a CNN model that could be used in the quality control of photo documentation in EGD. Our model needs further validation with a large dataset, and we expect our model to help both endoscopists and patients by improving the quality of EGD procedures.
食管胃十二指肠镜检查(EGD)通常是安全的,但不良事件时有发生。这突出了 EGD 质量控制的必要性。上消化道(UGI)的完全可视化和图像记录是 EGD 质量控制的重要措施。为了在大规模评估这些措施,我们使用存档的内镜图像通过卷积神经网络(CNN)开发了一个人工智能驱动的 EGD 质量控制系统。
我们回顾性地收集并标记了 250 例 EGD 手术的图像,共 2599 张 UGI 部位的 8 个部位的图像,使用欧洲胃肠道内镜学会(ESGE)的图像记录方法。由 5 名专家确认的标签被认为是金标准。我们开发了一个用于 EGD 图像多分类的 CNN 模型,将其分类为 UGI 8 个部位之一,以及根据其完整性对每个 EGD 手术进行二进制分类。
我们的 CNN 模型成功地将 EGD 图像分类为 UGI 的 8 个区域之一,准确率为 97.58%,灵敏度为 97.42%,特异性为 99.66%,阳性预测值(PPV)为 97.50%,阴性预测值(NPV)为 99.66%。我们的模型对 EGD 的完整性进行分类,准确率为 89.20%,灵敏度为 89.20%,特异性为 100.00%,PPV 为 100.00%,NPV 为 64.94%。我们使用概率热图分析了模型的可信度。
我们构建了一个可以用于 EGD 图像记录质量控制的 CNN 模型。我们的模型需要使用更大的数据集进行进一步验证,我们期望我们的模型能够通过提高 EGD 手术的质量来帮助内镜医生和患者。