Nakashima Hirotaka, Kawahira Hiroshi, Kawachi Hiroshi, Sakaki Nobuhiro
Foundation for Detection of Early Gastric Carcinoma, Tokyo (Hirotaka Nakashima, Nobuhiro Sakaki).
Center for Frontier Medical Engineering, Chiba University, Chiba (Hiroshi Kawahira).
Ann Gastroenterol. 2018 Jul-Aug;31(4):462-468. doi: 10.20524/aog.2018.0269. Epub 2018 May 3.
Deep learning is a type of artificial intelligence (AI) that imitates the neural network in the brain. We generated an AI to diagnose () infection using blue laser imaging (BLI)-bright and linked color imaging (LCI). The aim of this pilot study was to establish an AI diagnosing system that predicts infection status using endoscopic images to improve the accuracy and productivity of endoscopic examination.
A total of 222 enrolled subjects (105 -positive) underwent esophagogastroduodenoscopy and a serum test for IgG antibodies. During esophagogastroduodenoscopy, an endoscopist sequentially took 3 still images of the lesser curvature of the stomach using white light imaging (WLI), BLI-bright, and LCI. EG-L580NW endoscopic equipment (FUJIFILM Co., Japan) was used for the study. The specifications of the AI were as follows: operating system, Linux; neural network, GoogLeNet; framework, Caffe; graphic processor unit, Geforce GTX TITAN X (NVIDIA Co., USA).
The area under the curve (AUC) on receiver operating characteristics analysis was 0.66 for WLI. In contrast, the AUCs of BLI-bright and LCI were 0.96 and 0.95, respectively. The AUCs obtained for BLI-bright and LCI were significantly larger than those for WLI (P<0.01).
The results demonstrate that the developed AI has an excellent ability to diagnose infection using BLI-bright and LCI. AI technology with image-enhanced endoscopy is likely to become a useful image diagnostic tool.
深度学习是一种模仿大脑神经网络的人工智能(AI)。我们开发了一种人工智能,用于使用蓝光激光成像(BLI)-明亮模式和链接彩色成像(LCI)诊断()感染。这项初步研究的目的是建立一个人工智能诊断系统,该系统使用内镜图像预测感染状态,以提高内镜检查的准确性和效率。
共有222名入组受试者(105名呈阳性)接受了食管胃十二指肠镜检查和血清IgG抗体检测。在食管胃十二指肠镜检查期间,内镜医师使用白光成像(WLI)、BLI-明亮模式和LCI依次拍摄胃小弯的3张静态图像。本研究使用了EG-L580NW内镜设备(日本富士胶片公司)。人工智能的规格如下:操作系统为Linux;神经网络为GoogLeNet;框架为Caffe;图形处理器为Geforce GTX TITAN X(美国英伟达公司)。
在接受者操作特征分析中,WLI的曲线下面积(AUC)为0.66。相比之下,BLI-明亮模式和LCI的AUC分别为0.96和0.95。BLI-明亮模式和LCI获得的AUC显著大于WLI的AUC(P<0.01)。
结果表明,所开发的人工智能具有使用BLI-明亮模式和LCI诊断感染的出色能力。具有图像增强内镜的人工智能技术可能会成为一种有用的图像诊断工具。