Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan.
Faculty of Science and Engineering, Kindai University, Osaka, Japan.
PLoS One. 2021 Jun 22;16(6):e0253585. doi: 10.1371/journal.pone.0253585. eCollection 2021.
Convolutional neural networks (CNNs) are widely used for artificial intelligence (AI)-based image classification. Residual network (ResNet) is a new technology that facilitates the accuracy of image classification by CNN-based AI. In this study, we developed a novel AI model combined with ResNet to diagnose colorectal polyps. In total, 127,610 images consisting of 62,510 images with adenomatous polyps, 30,443 with non-adenomatous hyperplastic polyps, and 34,657 with healthy colorectal normal mucosa were subjected to deep learning after annotation. Each validation process was performed using 12,761 stored images of colorectal polyps by a 10-fold cross validation. The efficacy of the ResNet system was evaluated by sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy. The sensitivity, specificity, PPV, NPV, and diagnostic accuracy for adenomatous polyps at WLIs were 98.8%, 94.3%, 90.5%, 87.4%, and 92.8%, respectively. Similar results were obtained for adenomatous polyps at narrow-band imagings (NBIs) and chromoendoscopy images (CEIs) (NBIs vs. CEIs: sensitivity, 94.9% vs. 98.2%; specificity, 93.9% vs. 85.8%; PPV, 92.5% vs. 81.7%; NPV, 93.5% vs. 99.9%; and overall accuracy, 91.5% vs. 90.1%). The ResNet model is a powerful tool that can be used for AI-based accurate diagnosis of colorectal polyps.
卷积神经网络(CNN)广泛应用于基于人工智能(AI)的图像分类。残差网络(ResNet)是一种新技术,可通过基于 AI 的 CNN 提高图像分类的准确性。在这项研究中,我们开发了一种新的 AI 模型,结合 ResNet 用于诊断结直肠息肉。共对 127610 张图像进行深度学习,其中包括 62510 张腺瘤性息肉图像、30443 张非腺瘤性增生性息肉图像和 34657 张结直肠正常黏膜图像。通过 10 折交叉验证,每次验证过程都使用 12761 张存储的结直肠息肉图像进行。通过灵敏度、特异性、阳性预测值(PPV)、阴性预测值(NPV)和诊断准确性来评估 ResNet 系统的疗效。在 WLIs 下,腺瘤性息肉的灵敏度、特异性、PPV、NPV 和诊断准确性分别为 98.8%、94.3%、90.5%、87.4%和 92.8%。在窄带成像(NBI)和 chromoendoscopy 图像(CEI)下,也得到了类似的结果(NBI 与 CEI:灵敏度 94.9%与 98.2%;特异性 93.9%与 85.8%;PPV 92.5%与 81.7%;NPV 93.5%与 99.9%;整体准确性 91.5%与 90.1%)。ResNet 模型是一种强大的工具,可用于基于 AI 的结直肠息肉准确诊断。
Gastroenterology. 2017-10-16
Gastroenterology. 2009-4
Int J Comput Assist Radiol Surg. 2025-5
Therap Adv Gastroenterol. 2020-3-20
Gastroenterology. 2018-6-18
Gastroenterology. 2018-6
Gastroenterology. 2017-10-16