文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于残差网络的人工智能结直肠息肉内镜诊断。

Artificial intelligence-based endoscopic diagnosis of colorectal polyps using residual networks.

机构信息

Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan.

Faculty of Science and Engineering, Kindai University, Osaka, Japan.

出版信息

PLoS One. 2021 Jun 22;16(6):e0253585. doi: 10.1371/journal.pone.0253585. eCollection 2021.


DOI:10.1371/journal.pone.0253585
PMID:34157030
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8219125/
Abstract

Convolutional neural networks (CNNs) are widely used for artificial intelligence (AI)-based image classification. Residual network (ResNet) is a new technology that facilitates the accuracy of image classification by CNN-based AI. In this study, we developed a novel AI model combined with ResNet to diagnose colorectal polyps. In total, 127,610 images consisting of 62,510 images with adenomatous polyps, 30,443 with non-adenomatous hyperplastic polyps, and 34,657 with healthy colorectal normal mucosa were subjected to deep learning after annotation. Each validation process was performed using 12,761 stored images of colorectal polyps by a 10-fold cross validation. The efficacy of the ResNet system was evaluated by sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy. The sensitivity, specificity, PPV, NPV, and diagnostic accuracy for adenomatous polyps at WLIs were 98.8%, 94.3%, 90.5%, 87.4%, and 92.8%, respectively. Similar results were obtained for adenomatous polyps at narrow-band imagings (NBIs) and chromoendoscopy images (CEIs) (NBIs vs. CEIs: sensitivity, 94.9% vs. 98.2%; specificity, 93.9% vs. 85.8%; PPV, 92.5% vs. 81.7%; NPV, 93.5% vs. 99.9%; and overall accuracy, 91.5% vs. 90.1%). The ResNet model is a powerful tool that can be used for AI-based accurate diagnosis of colorectal polyps.

摘要

卷积神经网络(CNN)广泛应用于基于人工智能(AI)的图像分类。残差网络(ResNet)是一种新技术,可通过基于 AI 的 CNN 提高图像分类的准确性。在这项研究中,我们开发了一种新的 AI 模型,结合 ResNet 用于诊断结直肠息肉。共对 127610 张图像进行深度学习,其中包括 62510 张腺瘤性息肉图像、30443 张非腺瘤性增生性息肉图像和 34657 张结直肠正常黏膜图像。通过 10 折交叉验证,每次验证过程都使用 12761 张存储的结直肠息肉图像进行。通过灵敏度、特异性、阳性预测值(PPV)、阴性预测值(NPV)和诊断准确性来评估 ResNet 系统的疗效。在 WLIs 下,腺瘤性息肉的灵敏度、特异性、PPV、NPV 和诊断准确性分别为 98.8%、94.3%、90.5%、87.4%和 92.8%。在窄带成像(NBI)和 chromoendoscopy 图像(CEI)下,也得到了类似的结果(NBI 与 CEI:灵敏度 94.9%与 98.2%;特异性 93.9%与 85.8%;PPV 92.5%与 81.7%;NPV 93.5%与 99.9%;整体准确性 91.5%与 90.1%)。ResNet 模型是一种强大的工具,可用于基于 AI 的结直肠息肉准确诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac0/8219125/d0748679878f/pone.0253585.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac0/8219125/d1681922dd76/pone.0253585.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac0/8219125/02f9c98bad2e/pone.0253585.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac0/8219125/8f9d0e263546/pone.0253585.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac0/8219125/d0748679878f/pone.0253585.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac0/8219125/d1681922dd76/pone.0253585.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac0/8219125/02f9c98bad2e/pone.0253585.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac0/8219125/8f9d0e263546/pone.0253585.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ac0/8219125/d0748679878f/pone.0253585.g004.jpg

相似文献

[1]
Artificial intelligence-based endoscopic diagnosis of colorectal polyps using residual networks.

PLoS One. 2021

[2]
Improved Accuracy in Optical Diagnosis of Colorectal Polyps Using Convolutional Neural Networks with Visual Explanations.

Gastroenterology. 2020-6

[3]
Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model.

Gut. 2017-10-24

[4]
Application of artificial intelligence using a convolutional neural network for diagnosis of early gastric cancer based on magnifying endoscopy with narrow-band imaging.

J Gastroenterol Hepatol. 2021-2

[5]
Accurate Classification of Diminutive Colorectal Polyps Using Computer-Aided Analysis.

Gastroenterology. 2017-10-16

[6]
Computer-aided diagnosis of colorectal polyps using linked color imaging colonoscopy to predict histology.

Sci Rep. 2019-2-27

[7]
Validation of a simple classification system for endoscopic diagnosis of small colorectal polyps using narrow-band imaging.

Gastroenterology. 2012-5-15

[8]
Narrow-band Imaging International Colorectal Endoscopic Classification to predict polyp histology: REDEFINE study (with videos).

Gastrointest Endosc. 2016-2-27

[9]
Narrow-band imaging without optical magnification for histologic analysis of colorectal polyps.

Gastroenterology. 2009-4

[10]
Accuracy of narrow-band imaging in predicting colonoscopy surveillance intervals and histology of distal diminutive polyps: results from a multicenter, prospective trial.

Gastrointest Endosc. 2013-4-11

引用本文的文献

[1]
Hybrid deep learning framework based on EfficientViT for classification of gastrointestinal diseases.

Sci Rep. 2025-7-24

[2]
NICE polyp feature classification for colonoscopy screening.

Int J Comput Assist Radiol Surg. 2025-5

[3]
Advancing equitable and personalized cancer care: Novel applications and priorities of artificial intelligence for fairness and inclusivity in the patient care workflow.

Eur J Cancer. 2024-2

[4]
High-Speed and Accurate Diagnosis of Gastrointestinal Disease: Learning on Endoscopy Images Using Lightweight Transformer with Local Feature Attention.

Bioengineering (Basel). 2023-12-13

[5]
Self-supervised representation learning using feature pyramid siamese networks for colorectal polyp detection.

Sci Rep. 2023-12-8

[6]
Preparation of image databases for artificial intelligence algorithm development in gastrointestinal endoscopy.

Clin Endosc. 2022-9

本文引用的文献

[1]
Automated endoscopic detection and classification of colorectal polyps using convolutional neural networks.

Therap Adv Gastroenterol. 2020-3-20

[2]
Endoscopic prediction of deeply submucosal invasive carcinoma with use of artificial intelligence.

Endosc Int Open. 2019-4

[3]
Real-Time Use of Artificial Intelligence in Identification of Diminutive Polyps During Colonoscopy: A Prospective Study.

Ann Intern Med. 2018-8-14

[4]
Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy.

Gastroenterology. 2018-6-18

[5]
Artificial Intelligence-Assisted Polyp Detection for Colonoscopy: Initial Experience.

Gastroenterology. 2018-6

[6]
Magnifying Narrow Band Imaging (NBI) for the Diagnosis of Localized Colorectal Lesions Using the Japan NBI Expert Team (JNET) Classification.

Oncology. 2017

[7]
Computer-Aided Diagnosis Based on Convolutional Neural Network System for Colorectal Polyp Classification: Preliminary Experience.

Oncology. 2017

[8]
Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model.

Gut. 2017-10-24

[9]
Accurate Classification of Diminutive Colorectal Polyps Using Computer-Aided Analysis.

Gastroenterology. 2017-10-16

[10]
Impact of an automated system for endocytoscopic diagnosis of small colorectal lesions: an international web-based study.

Endoscopy. 2016-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索