Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States.
Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States.
ACS Appl Mater Interfaces. 2021 Jan 20;13(2):2145-2164. doi: 10.1021/acsami.0c09774. Epub 2021 Jan 8.
Oligonucleotide-based probes offer the highest spatial resolution, force sensitivity, and molecular specificity for cellular tension sensing and have been developed to measure a variety of molecular forces mediated by individual receptors in T cells, platelets, fibroblasts, B-cells, and immortalized cancer cell lines. These fluorophore-oligonucleotide conjugate probes are designed with a stem-loop structure that engages cell receptors and reversibly unfolds due to mechanical strain. With the growth of recent work bridging molecular mechanobiology and biomaterials, there is a need for a detailed spectroscopic analysis of DNA tension probes that are used for cellular imaging. In this manuscript, we conducted an analysis of 19 DNA hairpin-based tension probe variants using molecular dynamics simulations, absorption spectroscopy, and fluorescence imaging (epifluorescence and fluorescence lifetime imaging microscopy). We find that tension probes are highly sensitive to their molecular design, including donor and acceptor proximity and pairing, DNA stem-loop structure, and conjugation chemistry. We demonstrate the impact of these design features using a supported lipid bilayer model of podosome-like adhesions. Finally, we discuss the requirements for tension imaging in various biophysical contexts and offer a series of experimental recommendations, thus providing a guide for the design and application of DNA hairpin-based molecular tension probes.
寡核苷酸探针在细胞张力感应方面提供了最高的空间分辨率、力灵敏度和分子特异性,并且已经开发出来用于测量 T 细胞、血小板、成纤维细胞、B 细胞和永生化癌细胞系中单个受体介导的各种分子力。这些荧光染料-寡核苷酸缀合物探针设计成具有茎环结构,与细胞受体结合,并由于机械应变而可逆地展开。随着分子机械生物学和生物材料之间的最新研究工作的发展,需要对用于细胞成像的 DNA 张力探针进行详细的光谱分析。在本文中,我们使用分子动力学模拟、吸收光谱和荧光成像(荧光和荧光寿命成像显微镜)对 19 种基于 DNA 发夹的张力探针变体进行了分析。我们发现张力探针对其分子设计非常敏感,包括供体和受体的接近和配对、DNA 茎环结构和缀合化学。我们使用 Podosome 样黏附的支撑脂质双层模型来证明这些设计特征的影响。最后,我们讨论了在各种生物物理背景下进行张力成像的要求,并提出了一系列实验建议,从而为基于 DNA 发夹的分子张力探针的设计和应用提供了指导。